55 research outputs found

    Effects of PCSK9 inhibition on glucose metabolism and β-cell function in humans: a pilot study

    Get PDF
    BackgroundAnti-PCSK9 monoclonal antibodies are effective in reducing LDL-C and cardiovascular events by neutralizing circulating PCSK9. PCSK9, however, is also expressed in tissues, including the pancreas, and studies on PCSK9 KO mice have shown impaired insulin secretion. Statin treatment is already known to affect insulin secretion. Our aim was to conduct a pilot study to evaluate the effect of anti-PCSK9 mAb on glucose metabolism and β-cell function in humans.MethodsFifteen non-diabetic subjects, candidates for anti-PCSK9 mAb therapy, were enrolled. All underwent OGTT at baseline and after 6 months of therapy. During OGTT, insulin secretion parameters were derived from C-peptide by deconvolution (β cell glucose sensitivity). Surrogate insulin sensitivity indices were also obtained from OGTT (Matsuda).ResultsGlucose levels during OGTT were unchanged after 6 months of anti-PCSK9 mAb treatment, as well as insulin and C-peptide levels. The Matsuda index remained unchanged, while β-cell glucose sensitivity improved post-therapy (before: 85.3 ± 65.4; after: 118.6 ± 70.9 pmol min-1m-2mM-1; p<0.05). Using linear regression, we found a significant correlation between βCGS changes and BMI (p=0.004). Thus, we compared subjects with values above and below the median (27.6 kg/m2) and found that those with higher BMI had a greater increase in βCGS after therapy (before: 85.37 ± 24.73; after: 118.62 ± 26.83 pmol min-1m-2mM-1; p=0.007). There was also a significant correlation between βCGS change and Matsuda index through linear regression (p=0.04), so we analyzed subjects who had values above and below the median (3.8). This subgroup analysis showed a slight though not significant improvement in βCGS in more insulin resistant patients, (before: 131.4 ± 69.8; after: 170.8 ± 92.7 pmol min-1m-2mM-1; p=0.066).ConclusionsOur pilot study demonstrates that six-month treatment with anti-PCSK9 mAb improves β-cell function, and does not alter glucose tolerance. This improvement is more evident in patients with greater insulin-resistance (low Matsuda) and higher BMI

    Looking at NB-IoT over LEO Satellite Systems: Design and Evaluation of a Service-Oriented Solution

    Get PDF
    The adoption of the NB-IoT technology in satellite communications intends to boost Internet of Things services beyond the boundaries imposed by the current terrestrial infrastructures. Apart from link-level studies in the scientific literature and preliminary 3GPP technical reports, the overall debate is still open. To provide a further step forward in this direction, the work presented herein pursues a novel service-oriented methodology to design an effective solution, meticulously stitched around application requirements and technological constraints. To this end, it conducts link-level and system-level investigations to tune physical transmissions, satellite constellation, and protocol architecture, while ensuring the expected system behavior. To offer a real smart agriculture service operating in Europe, the resulting solution exploits 24 Low Earth Orbit satellites, grouped into 8 different orbits, moving at an altitude of 500 km. The configured protocol stack supports the transmission of tens of bytes generated at the application layer, by also counteracting the issues introduced by the satellite link. Since each satellite has the whole protocol stack on-board, terminals can transmit data without the need for the feeder link. This ensures communication latencies ranging from 16 minutes to 75 minutes, depending on the served number of terminals and the physical transmission settings. Moreover, the usage of the Early Data Transmission scheme reduces communication latencies up to 40%. These results pave the way towards the deployment of an effective proof-of-concept, which drastically reduces the time-to-market imposed by the current state of the art

    Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes

    Get PDF
    Aims/hypothesis: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. Methods: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. Results: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. Conclusions/interpretation: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity. Graphical abstract: [Figure not available: see fulltext.
    • …
    corecore