175 research outputs found

    Model of graviton-dusty universe

    Get PDF
    Primary features of a new cosmological model, which is based on conjectures about an existence of the graviton background and superstrong gravitational quantum interaction, are considered. An expansion of the universe is impossible in such the model because of deceleration of massive objects by the graviton background, which is similar to the one for the NASA deep space probes Pioneer 10, 11. Redshifts of remote objects are caused in the model by interaction of photons with the graviton background, and the Hubble constant depends on an intensity of interaction and an equivalent temperature of the graviton background. Virtual massive gravitons would be dark matter particles. They transfer energy, lost by luminous matter radiation, which in a final stage may be collected with black holes and other massive objects.Comment: Contribution to the 15th SIGRAV Conference on General Relativity and Gravitational Physics, September 9-12, 2002, Rome, Ital

    Structural dichroism in the antiferromagnetic insulating phase of V_2O_3

    Full text link
    We performed near-edge x-ray absorption spectroscopy (XANES) at V K edge in the antiferromagnetic insulating (AFI) phase of a 2.8% Cr-doped V_2O_3 single crystal. Linear dichroism of several percent is measured in the hexagonal plane and found to be in good agreement with ab-initio calculations based on multiple scattering theory. This experiment definitively proves the structural origin of the signal and therefore solves a controversy raised by previous interpretations of the same dichroism as non-reciprocal. It also calls for a further investigation of the role of the magnetoelectric annealing procedure in cooling to the AFI phase.Comment: 4 pages 3 figures. To be published in Phys. Rev. B (2005

    Orbital currents, anapoles, and magnetic quadrupoles in CuO

    Full text link
    We show that orbital currents in a CuO2 plane, if present, should be described by two independent parity and time-reversal odd order parameters, a toroidal dipole (anapole) and a magnetic quadrupole. Based on this, we derive the resonant X-ray diffraction cross-section for monoclinic CuO at the antiferromagnetic wavevector and show that the two order parameters can be disentangled. From our analysis, we examine a recent claim of detecting anapoles in CuO.Comment: 7 pages, 5 figure

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review

    On the nature of the magnetic ground-state wave function of V_2O_3

    Full text link
    After a brief historical introduction, we dwell on two recent experiments in the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray scattering and non-reciprocal linear dichroism, whose interpretations are in conflict, as they require incompatible magnetic space groups. Such a conflict is critically reviewed, in the light of the present literature, and new experimental tests are suggested, in order to determine unambiguously the magnetic group. We then focus on the correlated, non-local nature of the ground-state wave function, that is at the basis of some drawbacks of the LDA+U approach: we singled out the physical mechanism that makes LDA+U unreliable, and indicate the way out for a possible remedy. Finally we explain, by means of a symmetry argument related to the molecular wave function, why the magnetic moment lies in the glide plane, even in the absence of any local symmetry at vanadium sites.Comment: 7 pages, 1 figur
    corecore