126 research outputs found

    Using Independent Component Analysis to detect exoplanet reflection spectrum from composite spectra of exoplanetary binary systems

    Get PDF
    The analysis of the wavelength-dependent albedo of exoplanets represents a direct way to provide insight of their atmospheric composition and to constrain theoretical planetary atmosphere modelling. Wavelength-dependent albedo can be inferred from the exoplanet's reflected light of the host star, but this is not a trivial task. In fact, the planetary signal may be several orders of magnitude lower (10−410^{-4} or below) than the flux of the host star, thus making its extraction very challenging. Successful detection of the planetary signature of 51~Peg\,b has been recently obtained by using cross-correlation function (CCF) or autocorrelation function (ACF) techniques. In this paper we present an alternative method based on the use of Independent Component Analysis (ICA). In comparison to the above-mentioned techniques, the main advantages of ICA are that the extraction is \textit{"blind"} i.e. it does not require any \textit{a priori} knowledge of the underlying signals, and that our method allows us not only to detect the planet signal but also to estimate its wavelength dependence. To show and quantify the effectiveness of our method we successfully applied it to both simulated data and real data of an eclipsing binary star system. Eventually, when applied to real 51~Peg~+~51~Peg\,b data, our method extracts the signal of 51~Peg but we could not soundly detect the reflected spectrum of 51~Peg\,b mainly due to the insufficient SNRSNR of the input composite spectra. Nevertheless, our results show that with "ad-hoc" scheduled observations an ICA approach will be, in perspective, a very valid tool for studying exoplanetary atmospheres.Comment: 25 pages, 12 figures. Accepted to A

    Field tests for the ESPRESSO data analysis software

    Get PDF
    The data analysis software (DAS) for VLT ESPRESSO is aimed to set a new benchmark in the treatment of spectroscopic data towards the extremely-large-telescope era, providing carefully designed, fully interactive recipes to take care of complex analysis operations (e.g. radial velocity estimation in stellar spectra, interpretation of the absorption features in quasar spectra). A few months away from the instrument's first light, the DAS is now mature for science validation, with most algorithms already implemented and operational. In this paper, I will showcase the DAS features which are currently employed on high-resolution HARPS and UVES spectra to assess the scientific reliability of the recipes and their range of application. I will give a glimpse on the science that will be possible when ESPRESSO data become available, with a particular focus on the novel approach that has been adopted to simultaneously fit the emission continuum and the absorption lines in the Lyman-alpha forest of quasar spectra.Comment: 4 pages, 1 figure; proceedings of ADASS XXVI, accepted by ASP Conference Serie

    Data Analysis Software for the ESPRESSO Science Machine

    Get PDF
    ESPRESSO is an extremely stable high-resolution spectrograph which is currently being developed for the ESO VLT. With its groundbreaking characteristics it is aimed to be a "science machine", i.e., a fully-integrated instrument to directly extract science information from the observations. In particular, ESPRESSO will be the first ESO instrument to be equipped with a dedicated tool for the analysis of data, the Data Analysis Software (DAS), consisting in a number of recipes to analyze both stellar and quasar spectra. Through the new ESO Reflex GUI, the DAS (which will implement new algorithms to analyze quasar spectra) is aimed to get over the shortcomings of the existing software providing multiple iteration modes and full interactivity with the data.Comment: 5 pages, 2 figures; proceedings of ADASS XXI

    UVES observations of QSO 0000-2620: oxygen and zinc abundances in the Damped Ly-alpha galaxy at z_abs=3.3901

    Full text link
    Observations of the QSO 0000-2620 with UVES spectrograph at the 8.2m ESO KUEYEN telescope are used for abundance analysis of the damped Ly-alpha system at z_{abs}=3.3901. Several Oxygen lines are identified in the Ly_alpha forest and a measure for the oxygen abundance is obtained at [O/H]=-1.85 +/- 0.1 by means of the unsaturated OI 925 A and OI 950 A lines. This represents the most accurate O measurement in a damped Ly_alpha galaxy so far. We have also detected ZnII 2026 A and CrII 2056, 2062 A redshifted at about 8900 A and found abundances [Zn/H] = -2.07 +/- 0.1 and [Cr/H]=-1.99 +/- 0.1. Furthermore, previous measurements of Fe, Si, Ni and N have been refined yielding [Fe/H]=-2.04 +/- 0.1, [Si/H]=-1.90 +/- 0.1, [Ni/H]=-2.27 +/- 0.1, and [N/H]=-2.68 +/- 0.1. The abundance of the non-refractory element zinc is the lowest among the damped Ly-alpha systems showing that the associated intervening galaxy is indeed in the early stages of its chemical evolution. The fact that the Zn abundance is identical to that of the refractory elements Fe and Cr suggests that dust grains have not formed yet. In this Damped Ly-alpha system the observed [O,S,Si/Zn,Fe,Cr] ratios, in whatever combination are taken, are close to solar (i.e 0.1-0.2 dex) and do not show the [alpha-element/Fe] enhancement observed in Milky Way stars of comparable metallicity. The observed behavior supports a galaxy evolution model characterized by either episodic or low star formation rate rather than a Milky-Way-type evolutionary model.Comment: Accepted by Ap

    Design of the VLT-CUBES image slicers: Field re-formatters to provide two spectral resolutions

    Get PDF
    CUBES is a high efficiency spectrograph designed for a Cassegrain focus of the Very Large Telescope and is expected to be in operation in 2028. It is designed to observe point or compact sources in a spectral range from 300 to 405nm. CUBES will provide two spectral resolving powers: R≥20,000 for high resolution (HR) and R≥5,000 for low resolution (LR). This is achieved by using an image slicer for each resolution mode. The image slicers re-format a rectangular on-sky field of view of either 1.5arcsec by 10arcsec (HR) or 6arcsec by 10arcsec (LR) into six side-by-side slitlets which form the spectrograph slit. The slit dimensions are 0.19mm × 88mm for HR and 0.77mm × 88mm for LR. The on-sky and physical widths of the slicer mirrors are 0.25arcsec/0.5mm (HR) and 1arcsec/2mm (LR). The image slicers reduce the spectrograph entrance slit etendue and hence the size of the spectrograph optics without associated slit losses. Each of the proposed image slicers consists of two arrays of six spherical mirrors (slicer mirror and camera mirror arrays) which provide a straight entrance slit to the spectrograph with almost diffraction-limited optical quality. This paper presents the description of the image slicers at the end of the Phase A conceptual design, including their optical design and expected performance

    INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    Get PDF
    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Ã… wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies

    Gaia-ESO Survey: empirical and synthetic Lick/SDSS indices for stellar population studies

    Get PDF
    Stellar population study is fundamental for the understanding of the physical process involved in the formation and evolution of galaxies. Out of several approaches to get information about abundance patterns in stellar population the use of broad and narrow spectral features of indices (e.g Lick/IDS system) is one of the most widely used. The large amount of data available nowadays allow to compute empirical libraries which are a fundamental tool for studying integrated spectra of stellar systems. Here, we present an empirical library of Lick-like spectral indices (ELickSDSSv2), computed using the spectra of the Gaia-ESO survey (GES). The library includes also the spectral indices of a previous version which was computed from Elodie, Miles, Indo-US, and FEROS spectra. Since empirical libraries carry on the imprints of the local properties of the solar neighbourhood, it is mandatory to complement them with synthetic libraries to reproduce integrated spectra of system whose star formation histories are different from those of local systems. Preliminary results of a new synthetic Lick/SDSS library are also presented
    • …
    corecore