5,498 research outputs found

    An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Get PDF
    A CFD analysis has been carried out to study the thermal–hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented

    Resistance-based probabilistic design by order statistics for an oil and gas deep-water well casing string affected by wear during kick load

    Get PDF
    Deep-water wells for oil and gas extraction make structural components, such as casing and tubing, work in extremely harsh environmental conditions that accelerate component degradation and increase failure probability. Therefore, it is important to properly design casing strings under these operative circumstances (Baraldi et al., 2012)

    The ACEGES 1.0 Documentation: Simulated Scenarios of Conventional Oil Production

    Get PDF
    he ACEGES (Agent-based Computational Economics of the Global Energy System) 1.0 model is an agent-based model of conventional oil production for 93 countries. The model accounts for four key uncertainties, namely Estimated Ultimate Recovery (EUR), estimated growth in oil demand, estimated growth in oil production and assumed peak/decline point. This documentation provides an overview of the ACEGES model capabilities and an example of how it can be used for long-term (discrete and continuous) scenarios of conventional oil production

    The ACEGES 1.0 Documentation: Simulated Scenarios of Conventional Oil Production

    Get PDF
    he ACEGES (Agent-based Computational Economics of the Global Energy System) 1.0 model is an agent-based model of conventional oil production for 93 countries. The model accounts for four key uncertainties, namely Estimated Ultimate Recovery (EUR), estimated growth in oil demand, estimated growth in oil production and assumed peak/decline point. This documentation provides an overview of the ACEGES model capabilities and an example of how it can be used for long-term (discrete and continuous) scenarios of conventional oil production

    Some new insights in swelling and swelling pressure of low active clay

    Get PDF
    This paper presents a multidimensional chemo-mechanical model for saturated clay treated as a two-phase deformable and chemically reactive porous medium. The constitutive relation is an extension of the original chemo-mechanical model proposed by Gajo et al. (2002) and Loret et al. (2002), in which a q-p formulation was proposed with a Cam-Clay-like elastic response. A novel hyper-elastic law is proposed in which shear stiffness and bulk stiffness change with stress state and ion concentration in pore solution. The proposed constitutive model and the associated coupled finite element formulation are implemented in a 2D, commercial, finite element code (ABAQUS) in the form of user-defined external subroutines. The proposed framework is used to simulate the oedometer tests performed on a low activity clay extracted from Costa della Gaveta slope. The computed chemo mechanical behaviour of the material prepared with distilled water is compared with the experimental results obtained from reconstituted specimens. Moreover, swelling and swelling pressure are computed for the overconsolidated material reconstituted with 1 M NaCl solution and then exposed to distilled water. The comparison of simulations and experiments shows a good agreement

    An Investigation of Complex Mode Shapes

    Get PDF
    This paper presents an investigation of complex mode shape analysis caused by non-linear damping. Nowadays, most academics are accustomed to complex mode shapes, which are a characteristic of most axisymmetric structures. The topic was deeply investigated during the 1980s, sparking the sharpest debates about their physical existence or not. However, after nearly three decades, one question still stands, do we know all about complex mode shapes? This paper takes the dust off this topic again and explores how complex eigenvectors arise when the percentage frequency separation between two mode shapes is the same order of magnitude as the percentage damping. The difference between the past and present investigations relates to the non-linear damping that might arise from joint dynamics under various vibration amplitudes. Hence, the new research question is about the investigation of amplitude-dependent damping on the modal complexity. Why bother? There are several engineering applications in both space and aerospace where axisymmetric structures and joint dynamics can impair the numerical analysis that is currently performed. This paper does not offer any solutions but does expand the research on an unsolved challenge by identifying the questions posed.</p

    Conceptual design of the enhanced coolant purification systems for the European HCLL and HCPB test blanket modules

    Get PDF
    The Coolant Purification Systems (CPSs) is one of the most relevant ancillary systems of European Helium Cooled Lead Lithium (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Modules (TBMs) which are currently in the preliminary design phase in view of their installation and operation in ITER. The CPS implements mainly two functions: the extraction and concentration of the tritium permeated from the TBM modules into the primary cooling circuit and the chemistry control of helium primary coolant. During the HCLL and HCPB-TBSs (Test Blanket Systems) Conceptual Design Review (CDR) in 2015 it was recognized the need of reducing the tritium permeation into the Port Cell #16 of ITER. To achieve this and, then, to lower the tritium partial pressure in the Helium Cooling Systems in normal operation, the helium flow-rate treated by each CPS has been increased of almost one order of magnitude. In 2017, to satisfy the CDR outcomes and the new design requirements requested by Fusion for Energy (F4E, the European Domestic Agency for ITER), ENEA performed a preliminary design of the “enhanced” CPSs. This paper presents the current design of the “enhanced” CPSs, focusing on design requirements, assumptions, selection of technologies and preliminary components sizing
    • …
    corecore