22,999 research outputs found
Are the Perseus-Pisces chain and the Pavo-Indus wall connected?
A significant empty region was found between the southern Pavo- Indus (PI)
wall and the northern Perseus-Pisces (PP) chain. This survey tests the reality
of this void which may simply reflect previous poor sampling of the galaxies in
this region. Redshifts for a magnitude selected sample of 379 galaxies were
obtained covering the four UKST/SERC survey fields with Bt <= 17.0. All
redshifts were obtained with the FLAIR multi-object spectroscopy system on the
1.2 m U.K. Schmidt Telescope at Siding Spring, Australia. Two highly
significant density enhancements were found in the galaxy distribution at 133
Mpc and 200 Mpc (Ho=75 km/s/Mpc). We claim that no connexion exists between PP
and PI. However, a southern extension of PP was detected and makes the total
length of this chain of more than 150 Mpc.Comment: 14 pages, postscript including tables and figures
Hard sphere-like dynamics in a non hard sphere liquid
The collective dynamics of liquid Gallium close to the melting point has been
studied using Inelastic X-ray Scattering to probe lengthscales smaller than the
size of the first coordination shell. %(momentum transfers, , 15
nm). Although the structural properties of this partially covalent
liquid strongly deviate from a simple hard-sphere model, the dynamics, as
reflected in the quasi-elastic scattering, are beautifully described within the
framework of the extended heat mode approximation of Enskog's kinetic theory,
analytically derived for a hard spheres system. The present work demonstrates
the applicability of Enskog's theory to non hard- sphere and non simple
liquids.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let
Advances in C-Planarity Testing of Clustered Graphs
A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex c in T corresponds to a subset of the vertices of the graph called ''cluster''. C-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected.
In this paper, we provide a polynomial time algorithm for c-planarity testing for "almost" c-connected clustered graphs, i.e., graphs for which all c-vertices corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings are connected.
The algorithm uses ideas of the algorithm for subgraph induced planar connectivity augmentation. We regard it as a first step towards general c-planarity testing
Conical emission, pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses
The precise observation of the angle-frequency spectrum of light filaments in
water reveals a scenario incompatible with current models of conical emission
(CE). Its description in terms of linear X-wave modes leads us to understand
filamentation dynamics requiring a phase- and group-matched, Kerr-driven
four-wave-mixing process that involves two highly localized pumps and two
X-waves. CE and temporal splitting arise naturally as two manifestations of
this process
Thrust distribution for 3-jet production from e+e 12 annihilation within the QCD conformal window and in QED
We investigate the theoretical predictions for thrust distribution in the electron positron annihilation to three-jets process at NNLO for different values of the number of flavors, Nf. To determine the distribution along the entire renormalization group flow from the highest energies to zero energy we consider the number of flavors near the upper boundary of the conformal window. In this regime of number of flavors the theory develops a perturbative infrared interacting fixed point. We then consider also the QED thrust obtained as the limit Nc\u21920 of the number of colors. In this case the low energy limit is governed by an infrared free theory. Using these quantum field theories limits as theoretical laboratories we arrive at an interesting comparison between the Conventional Scale Setting - (CSS) and the Principle of Maximum Conformality (PMC 1e) methods. We show that within the perturbative regime of the conformal window and also out of the conformal window the PMC 1e leads to a higher precision, and that reducing the number of flavors, from the upper boundary to the lower boundary, through the phase transition the curves given by the PMC 1e method preserve with continuity the position of the peak, showing perfect agreement with the experimental data already at NNLO
Dissipative Effects in the Electronic Transport through DNA Molecular Wires
We investigate the influence of a dissipative environment which effectively
comprises the effects of counterions and hydration shells, on the transport
properties of short \DNA wires. Their electronic structure is captured by a
tight-binding model which is embedded in a bath consisting of a collection of
harmonic oscillators. Without coupling to the bath a temperature independent
gap opens in the electronic spectrum. Upon allowing for electron-bath
interaction the gap becomes temperature dependent. It increases with
temperature in the weak-coupling limit to the bath degrees of freedom. In the
strong-coupling regime a bath-induced {\it pseudo-gap} is formed. As a result,
a crossover from tunneling to activated behavior in the low-voltage region of
the - characteristics is observed with increasing temperature. The
temperature dependence of the transmission near the Fermi energy, , manifests an Arrhenius-like behavior in agreement with recent transport
experiments. Moreover, shows a weak exponential dependence on
the wire length, typical of strong incoherent transport. Disorder effects smear
the electronic bands, but do not appreciably affect the pseudo-gap formation
High frequency dynamics in a monatomic glass
The high frequency dynamics of glassy Selenium has been studied by Inelastic
X-ray Scattering at beamline BL35XU (SPring-8). The high quality of the data
allows one to pinpoint the existence of a dispersing acoustic mode for
wavevectors () of nm, helping to clarify a previous
contradiction between experimental and numerical results. The sound velocity
shows a positive dispersion, exceeding the hydrodynamic value by 10%
at nm. The dependence of the sound attenuation
, reported for other glasses, is found to be the low- limit of a
more general law which applies also to the
higher region, where no longer holds.Comment: Phys. Rev. Lett. (Accepted
On the Performance Prediction of BLAS-based Tensor Contractions
Tensor operations are surging as the computational building blocks for a
variety of scientific simulations and the development of high-performance
kernels for such operations is known to be a challenging task. While for
operations on one- and two-dimensional tensors there exist standardized
interfaces and highly-optimized libraries (BLAS), for higher dimensional
tensors neither standards nor highly-tuned implementations exist yet. In this
paper, we consider contractions between two tensors of arbitrary dimensionality
and take on the challenge of generating high-performance implementations by
resorting to sequences of BLAS kernels. The approach consists in breaking the
contraction down into operations that only involve matrices or vectors. Since
in general there are many alternative ways of decomposing a contraction, we are
able to methodically derive a large family of algorithms. The main contribution
of this paper is a systematic methodology to accurately identify the fastest
algorithms in the bunch, without executing them. The goal is instead
accomplished with the help of a set of cache-aware micro-benchmarks for the
underlying BLAS kernels. The predictions we construct from such benchmarks
allow us to reliably single out the best-performing algorithms in a tiny
fraction of the time taken by the direct execution of the algorithms.Comment: Submitted to PMBS1
Cosmological and Black Hole Spacetimes in Twisted Noncommutative Gravity
We derive noncommutative Einstein equations for abelian twists and their
solutions in consistently symmetry reduced sectors, corresponding to twisted
FRW cosmology and Schwarzschild black holes. While some of these solutions must
be rejected as models for physical spacetimes because they contradict
observations, we find also solutions that can be made compatible with low
energy phenomenology, while exhibiting strong noncommutativity at very short
distances and early times.Comment: LaTeX 12 pages, JHEP.st
Fermions Tunnelling from Black Holes
We investigate the tunnelling of spin 1/2 particles through event horizons.
We first apply the tunnelling method to Rindler spacetime and obtain the Unruh
temperature. We then apply fermion tunnelling to a general non-rotating black
hole metric and show that the Hawking temperature is recovered.Comment: 22 pages, v2: added references, v3: fixed minor typos, v4: added a
new section applying fermion tunnelling method to Kruskal-Szekers
coordinates, fixed minor typo, and added references, v5: modified
introduction and conclusion, fixed typo
- …