12,336 research outputs found
Bypassing state initialisation in perfect state transfer protocols on spin-chains
Although a complete picture of the full evolution of complex quantum systems
would certainly be the most desirable goal, for particular Quantum Information
Processing schemes such an analysis is not necessary. When quantum correlations
between only specific elements of a many-body system are required for the
performance of a protocol, a more distinguished and specialised investigation
is helpful. Here, we provide a striking example with the achievement of perfect
state transfer in a spin chain without state initialisation, whose realisation
has been shown to be possible in virtue of the correlations set between the
first and last spin of the transmission-chain.Comment: 8 pages, 2 figures, RevTeX
A deeper insight into quantum state transfer from an information flux viewpoint
We use the recently introduced concept of information flux in a many-body
register in order to give an alternative viewpoint on quantum state transfer in
linear chains of many spins.Comment: 6 pages, 3 figures, RevTeX
Bypassing state initialization in Hamiltonian tomography on spin-chains
We provide an extensive discussion on a scheme for Hamiltonian tomography of
a spin-chain model that does not require state initialization [Phys. Rev. Lett.
102, 187203 (2009)]. The method has spurred the attention of the physics
community interested in indirect acquisition of information on the dynamics of
quantum many-body systems and represents a genuine instance of a
control-limited quantum protocol.Comment: 7 pages, 2 figures, RevTeX
Alternate two-dimensional quantum walk with a single-qubit coin
We have recently proposed a two-dimensional quantum walk where the
requirement of a higher dimensionality of the coin space is substituted with
the alternance of the directions in which the walker can move [C. Di Franco, M.
Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {\bf 106}, 080502 (2011)]. For a
particular initial state of the coin, this walk is able to perfectly reproduce
the spatial probability distribution of the non-localized case of the Grover
walk. Here, we present a more detailed proof of this equivalence. We also
extend the analysis to other initial states, in order to provide a more
complete picture of our walk. We show that this scheme outperforms the Grover
walk in the generation of - spatial entanglement for any initial
condition, with the maximum entanglement obtained in the case of the particular
aforementioned state. Finally, the equivalence is generalized to wider classes
of quantum walks and a limit theorem for the alternate walk in this context is
presented.Comment: 9 pages, 9 figures, RevTeX
Measurement-induced generation of spatial entanglement in a two-dimensional quantum walk with single-qubit coin
One of the proposals for the exploitation of two-dimensional quantum walks
has been the efficient generation of entanglement. Unfortunately, the
technological effort required for the experimental realization of standard
two-dimensional quantum walks is significantly demanding. In this respect, an
alternative scheme with less challenging conditions has been recently studied,
particularly in terms of spatial-entanglement generation [C. Di Franco, M. Mc
Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. Here, we extend
the investigation to a scenario where a measurement is performed on the coin
degree of freedom after the evolution, allowing a further comparison with the
standard two-dimensional Grover walk.Comment: 9 pages, 4 figures, RevTeX
Nested entangled states for distributed quantum channels
We find a coupling-strength configuration for a linear chain of N spins which
gives rise to simultaneous multiple Bell states. We suggest a way such an
interesting entanglement pattern can be used in order to distribute maximally
entangled channels to remote locations and generate multipartite entanglement
with a minimum-control approach. Our proposal thus provides a way to achieve
the core resources in distributed information processing. The schemes we
describe can be efficiently tested in chains of coupled cavities interacting
with three-level atoms.Comment: 4 pages, 2 figures, RevTeX
A ricardian analysis of the impact of climate change on permanent crops in a mediterranean region
This is the first study which explores the impact of climate change in Sicily, a small Mediterranean region of Southern Europe. According to research, Mediterranean area has shown large climate shifts in the last century and it has been identified as one of the most prominent “Hot-Spots” in future climate change projections. Since agriculture is an economic activity which strongly depends on climate setting and is particularly responsive to climate changes, it is important to understand how such changes may affect agricultural profitability in the Mediterranean region. The aim of the present study is to assess the expected impact of climate change on permanent crops cultivated in Sicilian region (Southern Italy). By using data from Farm Accountancy Data Network and Ensembles climatic projections for 2021-2050 period, we showed that the impact of climate change is prominent in this region. However, crops respond to climatic variations in a different manner, highlighting that unlike the strong reduction in profitability of grapevine and citrus tree, the predicted average Net Revenue of olive tree is almost the same as in the reference period (1961-1990)
Quantum state transfer via temporal kicking of information
We propose a strategy for perfect state transfer in spin chains based on the
use of an unmodulated coupling Hamiltonian whose coefficients are explicitly
time dependent. We show that, if specific and non-demanding conditions are
satisfied by the temporal behavior of the coupling strengths, our model allows
perfect state transfer. The paradigma put forward by our proposal holds the
promises to set an alternative standard to the use of clever encoding and
coupling-strength engineering for perfect state transfer.Comment: 7 pages, 7 figures, RevTeX
Optimal stochastic modelling with unitary quantum dynamics
Identifying and extracting the past information relevant to the future
behaviour of stochastic processes is a central task in the quantitative
sciences. Quantum models offer a promising approach to this, allowing for
accurate simulation of future trajectories whilst using less past information
than any classical counterpart. Here we introduce a class of phase-enhanced
quantum models, representing the most general means of causal simulation with a
unitary quantum circuit. We show that the resulting constructions can display
advantages over previous state-of-art methods - both in the amount of
information they need to store about the past, and in the minimal memory
dimension they require to store this information. Moreover, we find that these
two features are generally competing factors in optimisation - leading to an
ambiguity in what constitutes the optimal model - a phenomenon that does not
manifest classically. Our results thus simultaneously offer new quantum
advantages for stochastic simulation, and illustrate further qualitative
differences in behaviour between classical and quantum notions of complexity.Comment: 9 pages, 5 figure
Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem
We report an experimental demonstration of a one-way implementation of a
quantum algorithm solving Simon's Problem - a black box period-finding problem
which has an exponential gap between the classical and quantum runtime. Using
an all-optical setup and modifying the bases of single-qubit measurements on a
five-qubit cluster state, key representative functions of the logical two-qubit
version's black box can be queried and solved. To the best of our knowledge,
this work represents the first experimental realization of the quantum
algorithm solving Simon's Problem. The experimental results are in excellent
agreement with the theoretical model, demonstrating the successful performance
of the algorithm. With a view to scaling up to larger numbers of qubits, we
analyze the resource requirements for an n-qubit version. This work helps
highlight how one-way quantum computing provides a practical route to
experimentally investigating the quantum-classical gap in the query complexity
model.Comment: 9 pages, 5 figure
- …