31 research outputs found

    Transcriptional, epigenetic and pharmacological control of JAK/STAT pathway in NK cells

    Get PDF
    Differentiation of Natural Killer (NK) cells is a stepwise process having its origin in the bone marrow and proceeding in the periphery, where these cells follow organ specific trajectories. Several soluble factors and cytokines regulate the distinct stages of NK cell differentiation, and ultimately, their functional properties. Cytokines activating the Janus kinases (JAKs) and members of the signal transducer and activator of transcription (STAT) pathway control distinct aspects of NK cell biology, ranging from development, terminal differentiation, activation, and generation of cells with adaptive properties. Here, we discuss how the recent advances of next generation sequencing (NGS) technology have led to unravel novel molecular aspects of gene regulation, with the aim to provide genomic views of how STATs regulate transcriptional and epigenetic features of NK cells during the different functional stages

    Assessing Phosphorylation of STAT Transcription Factors in Mouse Innate Lymphoid Cells

    No full text
    Innate lymphoid cells (ILCs) ensure protection against pathogens by quickly reacting to the alterations of the cytokine milieu taking place upon infection. More than 50 cytokines and growth factors activate the Janus kinases (JAKs), leading to phosphorylation of members of the signal transducer and activator of transcription (STAT) family. Activation of STATs induces specific transcriptional programs which are associated with distinct cellular outcomes. Thus, an efficient measurement of rapid STAT phosphorylation enables not only to dissect the spectrum of cytokine sensitivity among ILC subsets but also to pinpoint specific transcriptional programs and cellular functions initiated after activation. Using this method, we have previously dissected the downstream events of Interleukin (IL)-23 and IL-12 signaling in ILCs, shedding light on the differential usage of STATs among ILC subsets. Here, we provide an optimized and detailed protocol describing how to analyze phosphorylation of STAT transcription factors in murine NK and ILC subsets isolated from different tissues

    CSF tau proteins correlate with an atypical clinical presentation in dementia with Lewy bodies

    No full text
    A cerebrospinal fluid (CSF) Alzheimer’s disease (AD) profile, that is, decreased amyloid-β1-42 (Aβ42) and increased total tau protein (t-tau) and/or phosphorylated tau at threonine-181 (p-tau),1 has been identified in a substantial number of dementia with Lewy bodies (DLB) patients, and it has been related to a more rapid cognitive decline.1 We investigated the association between AD CSF biomarkers and DLB core clinical features to better understand in vivo how AD pathology influences DLB clinical presentation. We included 171 subjects with a clinical diagnosis of probable DLB2 3 from the European DLB consortium (E-DLB). The centres involved are summarised in online supplementary table 1. Clinical examination was performed as previously reported.1 Dopamine transporter (DAT) single-photon emission CT scans (123I-FP-CIT-SPECT) were performed in 80 patients

    In vivo multi-parametric manganese-enhanced MRI for detecting amyloid plaques in rodent models of Alzheimer’s disease

    No full text
    Abstract Amyloid plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD
    corecore