34 research outputs found

    A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11

    Get PDF
    Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11 +/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11 −/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination

    SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: Everybody Does their Best

    Get PDF
    Background: Data on immune responses to SARS-CoV-2 in patients with Primary Antibody Deficiencies (PAD) are limited to infected patients and to heterogeneous cohorts after immunization. Methods: Forty-one patients with Common Variable Immune Deficiencies (CVID), six patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-receptor binding domain (RBD) antibody production, generation of Spike-specific memory B-cells, and Spike-specific T-cells before vaccination and one week after the second dose of BNT162b2 vaccine. Results: The vaccine induced Spike-specific IgG and IgA antibody responses in all HD and in 20% of SARS-CoV-2 naive CVID patients. Anti-Spike IgG were detectable before vaccination in 4 out 7 CVID previously infected with SARS-CoV-2 and were boosted in six out of seven patients by the subsequent immunization raising higher levels than patients naïve to infection. While HD generated Spike-specific memory B-cells, and RBD-specific B-cells, CVID generated Spike-specific atypical B-cells, while RBD-specific B-cells were undetectable in all patients, indicating the incapability to generate this new specificity. Specific T-cell responses were evident in all HD and defective in 30% of CVID. All but one patient with XLA responded by specific T-cell only. Conclusion: In PAD patients, early atypical immune responses after BNT162b2 immunization occurred, possibly by extra-follicular or incomplete germinal center reactions. If these responses to vaccination might result in a partial protection from infection or reinfection is now unknown. Our data suggests that SARS-CoV-2 infection more effectively primes the immune response than the immunization alone, possibly suggesting the need for a third vaccine dose for patients not previously infected

    Bone marrow megakaryocytic activation predicts fibrotic evolution of Philadelphia-negative myeloproliferative neoplasms

    Get PDF
    Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have been traditionally considered as indistinctly slowly progressing conditions; recent evidence proves that a subset of cases have a rapid evolution, so that MPNs' prognosis needs to be personalized. We identified a new morphological parameter, defined as Megakaryocytic Activation (M-ACT) based on the coexistence of megakaryocytic emperipolesis, megakaryocytes (MK) clusters formation and evidence of arrangement of collagen fibers around the perimeter of MK. We retrospectively analyzed the bone marrow biopsy of two MPNs cohorts of patients with polycythemia (PV) (n=64) and non-PV patients [including essential thrombocythemia (ET), and early/prefibrotic primary myelofibrosis (PMF)] (n=222). M-ACT showed a significant correlation with splenomegaly, white blood cell (WBC) count, and LDH serum levels in both groups, with JAK2 V617F allele burden in PV patients, and with CALR mutations, and platelet count in non-PV patients. Progression-free survival, defined as PV-to-secondary MF progression and non-PV-to-overt PMF, was worse in both PV and early/prefibrotic PMF patients with M-ACT in comparison to those without M-ACT (P<.0001). Interestingly, M-ACT was not found in the subgroup of ET patients. In conclusion, M-ACT can be helpful in the differential diagnosis of MPNs and can represent a new morphologic parameter with a predictive value for progression of MPNs

    The new Friuli Earthquake Damage (Fr.E.D.) database

    No full text
    After the May 6, 1976 earthquake in Friuli Venezia Giulia (NE of Italy) the buildings in the shaken area were investigated and 84780 forms were filled in. After a first organization of these data, we provided a re-designed database in order to make the data more usable. Thanks to the new technologies that have emerged in the last years, the original data were enlarged, adding, where possible, the geographic coordinates for each form acquired. We are now able to exploit new information for deeper studies and analyses to a level of detail unthinkable until a few years ago. All this information is now available on-line upon request

    The proper interplay between the expression of Spo11 splice isoforms and the structure of the pseudoautosomal region promotes XY chromosomes recombination

    No full text
    XY chromosome missegregation is relatively common in humans and can lead to sterility or the generation of aneuploid spermatozoa. a leading cause of XY missegregation in mammals is the lack of formation of double-strand breaks (DSBs) in the pseudoautosomal region (PAR), a defect that may occur in mice due to faulty expression of Spo11 splice isoforms. using a knock-in (ki) mouse that expresses only the single Spo11 ss splice isoform, here we demonstrate that by varying the genetic background of mice, the length of chromatin loops extending from the PAR axis and the XY recombination proficiency varies.in spermatocytes of C57(Spo11 ss ki/-) mice, in which loops are relatively short, recombination/synapsis between XY is fairly normal. In contrast, in cells of C57/129(Spo11 ss ki/-) males where PAR loops are relatively long, formation of DSBs in the PAR (more frequently the Y-PAR) and XY synapsis fails at a high rate, and mice produce sperm with sex-chromosomal aneuploidy. However, if the entire set of Spo11 splicing isoforms is expressed by a wild type allele in the C57/129 background, XY recombination and synapsis is recovered. By generating a Spo11aki mouse model, we prove that concomitant expression of SPO11 ss and SPO11a isoforms, boosts DSB formation in the PAR. Based on these findings, we propose that SPO11 splice isoforms cooperate functionally in promoting recombination in the PAR, constraining XY asynapsis defects that may arise due to differences in the conformation of the PAR between mouse strains
    corecore