2,209 research outputs found

    Functional Information, Biomolecular Messages and Complexity of BioSequences and Structures

    Get PDF
    In the quest for a mathematical measure able to capture and shed light on the dual notions of information and complexity in biosequences, Hazen et al. have introduced the notion of Functional Information (FI for short). It is also the result of earlier considerations and findings by Szostak and Carothers et al. Based on the experiments by Charoters et al., regarding FI in RNA binding activities, we decided to study the relation existing between FI and classic measures of complexity applied on protein-DNA interactions on a genome-wide scale. Using classic complexity measures, i.e, Shannon entropy and Kolmogorov Complexity as both estimated by data compression, we found that FI applied to protein-DNA interactions is genuinely different from them. Such a fact, together with the non-triviality of the biological function considered, contributes to the establishment of FI as a novel and useful measure of biocomplexity. Remarkably, we also found a relationship, on a genome-wide scale, between the redundancy of a genomic region and its ability to interact with a protein. This latter finding justifies even more some principles for the design of motif discovery algorithms. Finally, our experiments bring to light methodological limitations of Linguistic Complexity measures, i.e., a class of measures that is a function of the vocabulary richness of a sequence. Indeed, due to the technology and associated statistical preprocessing procedures used to conduct our studies, i.e., genome-wide ChIP-chip experiments, that class of measures cannot give any statistically significant indication about complexity and function. A serious limitation due to the widespread use of the technology. References J.M. Carothers, S.C. Oestreich, J.H. Davis, and J.W. Szostack. Informational complexity and functional activity of RNA structures. J. AM. CHEM. SOC., 126 (2004), pp. 5130-5137. R.M. Hazen, P.L. Griffin, J.M. Carothers, and J.W. Szostak. Functional Information and the emergence of biocomplexity. Proc. of Nat. Acad. Sci, 104 (2007), pp. 8574-8581. J.W. Szostak. Functional Information: molecular messages, Nature, 423 (2003)

    Oxidative Stress in Non-Alcoholic Fatty Liver Disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments

    Fusing Acoustic Ranges and Inertial Measurements in AUV Navigation: the Typhoon AUV at CommsNet13 Sea Trial

    Get PDF
    The paper presents some experimental results of autonomous underwater navigation, based on the fusion of acoustic and inertial measurements. The work is in the framework of the Thesaurus project, funded by the Tuscany Region, aiming at developing techniques for systematic exploration of marine areas of archaeological interest through a team of Autonomous Underwater Vehicles (AUVs). The test was carried out with one Typhoon vehicle, a 300m depth rated AUV with acoustic communication capabilities, during the CommsNet13 experiment, organized and scientifically coordinated by the NATO S&T Org. Ctr. for Maritime Research and Experimentation (CMRE, formerly NURC), with the participation of several research institutions. The fusion algorithm is formally casted into an optimal stochastic filtering problem, where the rough estimation of the vehicle position, velocity and attitude, are refined by using the depth measurement, the relative measurements available on the acoustic channel and the vehicle surge speed

    Autonomous Underwater Vehicles for Cooperative Surveys of Deep-Water Sites

    Get PDF
    • …
    corecore