210 research outputs found

    Complex Signatures of Natural Selection at the Duffy Blood Group Locus

    Get PDF
    The Duffy blood group locus (FY) has long been considered a likely target of natural selection, because of the extreme pattern of geographic differentiation of its three major alleles (FY*B, FY*A, and FY*O). In the present study, we resequenced the FY region in samples of Hausa from Cameroon (fixed for FY*O), Han Chinese (fixed for FY*A), Italians, and Pakistanis. Our goals were to characterize the signature of directional selection on FY*O in sub-Saharan Africa and to understand the extent to which natural selection has also played a role in the extreme geographic differentiation of the other derived allele at this locus, FY*A. The data from the FY region are compared with the patterns of variation observed at 10 unlinked, putatively neutral loci from the same populations, as well as with theoretical expectations from the neutral-equilibrium model. The FY region in the Hausa shows evidence of directional selection in two independent properties of the data (i.e., level of sequence variation and frequency spectrum), observations that are consistent with the FY*O mutation being the target. The Italian and Chinese FY data show patterns of variation that are very unusual, particularly with regard to frequency spectrum and linkage disequilibrium, but do not fit the predictions of any simple model of selection. These patterns may represent a more complex and previously unrecognized signature of positive selection

    Functional constraints on the constitutive androstane receptor inferred from human sequence variation and cross-species comparisons

    Get PDF
    <p>Abstract</p> <p>Members of the NR1I subfamily of nuclear receptors play a role in the transcriptional activation of genes involved in drug metabolism and transport. NR1I3, the constitutive androstane receptor (CAR), mediates the induction of several genes involved in drug response, including members of the <it>CYP3A</it>, <it>CYP2B </it>and <it>UGT1A </it>subfamilies. Large inter-individual variation in drug clearance has been reported for many drug metabolising enzyme genes. Sequence variation at the <it>CAR </it>locus could potentially contribute to variation in downstream targets, as well as to the substantial variation in expression level reported. We used a comparative genomics-based approach to select resequencing segments in 70 subjects from three populations. We identified 21 polymorphic sites, one of which results in an amino acid substitution. Our study reveals a common haplotype shared by all three populations which is remarkably similar to the ancestral sequence, confirming that CAR is under strong functional constraints. The level and pattern of sequence variation is approximately similar across populations, suggesting that interethnic differences in drug metabolism are not likely to be due to genetic variation at the <it>CAR </it>locus. We also identify several common non-coding variants that occur at highly conserved sites across four major branches of the mammalian phylogeny, suggesting that they may affect <it>CAR </it>expression and, ultimately, the activity of its downstream targets.</p

    Allele-Specific Down-Regulation of RPTOR Expression Induced by Retinoids Contributes to Climate Adaptations

    Get PDF
    The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation

    Adaptive Variation Regulates the Expression of the Human SGK1 Gene in Response to Stress

    Get PDF
    The Serum and Glucocorticoid-regulated Kinase1 (SGK1) gene is a target of the glucocorticoid receptor (GR) and is central to the stress response in many human tissues. Because environmental stress varies across habitats, we hypothesized that natural selection shaped the geographic distribution of genetic variants regulating the level of SGK1 expression following GR activation. By combining population genetics and molecular biology methods, we identified a variant (rs9493857) with marked allele frequency differences between populations of African and European ancestry and with a strong correlation between allele frequency and latitude in worldwide population samples. This SNP is located in a GR-binding region upstream of SGK1 that was identified using a GR ChIP-chip. SNP rs9493857 also lies within a predicted binding site for Oct1, a transcription factor known to cooperate with the GR in the transactivation of target genes. Using ChIP assays, we show that both GR and Oct1 bind to this region and that the ancestral allele at rs9493857 binds the GR-Oct1 complex more efficiently than the derived allele. Finally, using a reporter gene assay, we demonstrate that the ancestral allele is associated with increased glucocorticoid-dependent gene expression when compared to the derived allele. Our results suggest a novel paradigm in which hormonal responsiveness is modulated by sequence variation in the regulatory regions of nuclear receptor target genes. Identifying such functional variants may shed light on the mechanisms underlying inter-individual variation in response to environmental stressors and to hormonal therapy, as well as in the susceptibility to hormone-dependent diseases

    Prevalence of common disease-associated variants in Asian Indians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asian Indians display a high prevalence of diseases linked to changes in diet and environment that have arisen as their lifestyle has become more westernized. Using 1200 genome-wide polymorphisms in 432 individuals from 15 Indian language groups, we have recently shown that: (i) Indians constitute a distinct population-genetic cluster, and (ii) despite the geographic and linguistic diversity of the groups they exhibit a relatively low level of genetic heterogeneity.</p> <p>Results</p> <p>We investigated the prevalence of common polymorphisms that have been associated with diseases, such as atherosclerosis (<it>ALOX5</it>), hypertension (<it>CYP3A5</it>, <it>AGT</it>, <it>GNB3</it>), diabetes (<it>CAPN10</it>, <it>TCF7L2</it>, <it>PTPN22</it>), prostate cancer (DG8S737, rs1447295), Hirschsprung disease (<it>RET</it>), and age-related macular degeneration (<it>CFH</it>, <it>LOC387715</it>). In addition, we examined polymorphisms associated with skin pigmentation (<it>SLC24A5</it>) and with the ability to taste phenylthiocarbamide (<it>TAS2R38</it>). All polymorphisms were studied in a cohort of 576 India-born Asian Indians sampled in the United States. This sample consisted of individuals whose mother tongue is one of 14 of the 22 "official" languages recognized in India as well as individuals whose mother tongue is Parsi, a cultural group that has resided in India for over 1000 years. Analysis of the data revealed that allele frequency differences between the different Indian language groups were small, and interestingly the variant alleles of <it>ALOX5 </it>g.8322G>A and g.50778G>A, and <it>PTPN22 </it>g.36677C>T were present only in a subset of the Indian language groups. Furthermore, a latitudinal cline was identified both for the allele frequencies of the SNPs associated with hypertension (<it>CYP3A5</it>, <it>AGT</it>, <it>GNB3</it>), as well as for those associated with the ability to taste phenylthiocarbamide (<it>TAS2R38</it>).</p> <p>Conclusion</p> <p>Although caution is warranted due to the fact that this US-sampled Indian cohort may not represent a random sample from India, our results will hopefully assist in the design of future studies that investigate the genetic causes of these diseases in India. Our results also support the inclusion of the Indian population in disease-related genetic studies, as it exhibits unique genotype as well as phenotype characteristics that may yield new insights into the underlying causes of common diseases that are not available in other populations.</p

    Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway

    Full text link
    Angiogenesis is a host-mediated mechanism in disease pathophysiology. The vascular endothelial growth factor (VEGF) pathway is a major determinant of angiogenesis, and a comprehensive annotation of the functional variation in this pathway is essential to understand the genetic basis of angiogenesis-related diseases. We assessed the allelic heterogeneity of gene expression, population specificity of cis expression quantitative trait loci (eQTLs), and eQTL function in luciferase assays in CEU and Yoruba people of Ibadan, Nigeria (YRI) HapMap lymphoblastoid cell lines in 23 resequenced genes. Among 356 cis-eQTLs, 155 and 174 were unique to CEU and YRI, respectively, and 27 were shared between CEU and YRI. Two cis-eQTLs provided mechanistic evidence for two genome-wide association study findings. Five eQTLs were tested for function in luciferase assays and the effect of two KRAS variants was concordant with the eQTL effect. Two eQTLs found in each of PRKCE, PIK3C2A, and MAP2K6 could predict 44%, 37%, and 45% of the variance in gene expression, respectively. This is the first analysis focusing on the pattern of functional genetic variation of the VEGF pathway genes in CEU and YRI populations and providing mechanistic evidence for genetic association studies of diseases for which angiogenesis plays a pathophysiologic role. (C) 2013 Wiley Periodicals, Inc
    • …
    corecore