337 research outputs found

    Transport Coefficients of Black MQGP M3-Branes

    Get PDF
    The SYZ mirror, in the `delocalized limit' of [1], of (M)N (fractional)D3-branes, and wrapped N_f flavor D7-branes in the presence of a black-hole resulting in a non-Kaehler resolved warped deformed conifold (NKRWDC) in [2], was carried out in [3] and resulted in black M3-branes. The uplift, if valid globally(like [4] for fractional D3 branes in conifolds), asymptotes to M5-branes wrapping a two-cycle (homologously an (large) integer sum of two-spheres) in AdS_5xM_6. Interestingly, in the MQGP limit, assuming the deformation > resolution, by estimating the five SU(3) structure torsion (\tau) classes W_{1,2,3,4,5} we show that \tau\in W_4+W_5: 2/3 Re(W^3bar_5)=W^3bar_4 in the UV, implying the NKRWDC locally preserves SUSY. Further, the local T^3 of [3] in the large-r limit and the `MQGP' limit of [3], satisfies the same conditions as the maximal T^2-invariant special Lagrangian three-cycle of T^*(S^3) of [6], partly justifying use of local SYZ mirror symmetry in [3]. Using the Ouyang embedding in the DBI action of a D7-brane or by dimensionally reducing the 11-dimensional EH action to five (R^{1,3},r) dimensions, we then calculate a variety of gauge and metric-perturbation-modes' two-point functions using the prescription of [5], and show: (i) diffusion constant D~1/T, (ii) the electrical conductivity \sigma~T, (iii) the charge susceptibility \chi~ T^2, (iv) [using (i) - (iii)] the Einstein's relation \sigma/\chi=D, is indeed satisfied, (v) the R-charge diffusion constant D_R~1/T, and (vi) the possibility of generating \eta/s=1/4pi from solutions to the vector and tensor mode metric perturbations' EOMs, separately. All results are also valid in the limit of [2].Comment: v4:1+50 pages, correction in torsion classes: type IIB, locally, has SUSY in the U

    PeV scale Supersymmetry breaking and the IceCube neutrino flux

    Full text link
    The observation of very high energy neutrino events at IceCube has grasped a lot of attention in the fields of both astrophysics and particle physics. It has been speculated that these high energy neutrinos might originate either from purely conventional astrophysical sources or from the late decay of a super heavy (PeV scale) dark matter (DM) particle. In order for decaying DM to be a dominant source of the IceCube high-energy neutrinos, it would require an unusually suppressed value of the coupling of DM to neutrinos. We attempt to explain this small coupling in the context of an RR-parity conserving minimal supergravity model which has right-handed neutrino superfields. With the main assumptions of super-partner masses at the PeV scale and also a reheating temperature not much larger than the PeV scale, we find in our model several natural order-of-magnitude "miracles", (i) the gravitino is produced via freeze-in as a DM candidate with the correct relic density (ii) the right-handed (RH) sneutrino makes up only a tiny fraction (106)10^{-6}), of the present day energy density of the universe, yet its decay lifetime to the gravitino and neutrinos is such that it naturally predicts the right order-of-magnitude for the IceCube neutrino flux. The long lifetime of the RH sneutrino is explained by the existence of a global RR-symmetry which is only broken due to supersymmetry breaking effects. Our model also predicts a flux of 100 TeV gamma rays from the decaying RH sneutrino which are within the current observational constraints.Comment: v2: 34 pages, 6 figures, Journal version (published in JHEP

    Towards MQGP

    Full text link
    For the Ouyang embedding we calculate the chemical potential mu_C due to a U(1) gauge field on the w.v. of N_f D7-branes wrapped around a 4-cycle in a resolved warped deformed conifold with (M)N (fractional)D3-branes of [1], and show the possible thermodynamical stability up to linear order in the embedding parameter. In the spirit of [2] we obtain the local type IIA mirror using SYZ mirror symmetry near (theta_{1,2},psi)=(,{0,2pi,,4pi}) and then oxidize the same to M theory. We take two limits of this uplift:(i)g_s,g_sN_f,g_sM^2/N,g_s^2M N_f>1 similar to [1] effected by M eps^{-3d/2}, N eps^{-19d},g_s epsn^d,d>0 and eps<=O(0.01);(ii)the `MQGP limit' g_sM^2/N>1 for finite g_s,M, effected by: g_s eps, M eps^{-3d/2},N eps^{-39d},d>0, eps<~1). The second limit is more suited for the study of QGP (See [3]) and can only be addressed in M theory. The uplift gives a black M3-brane solution whose near-horizon geometry near theta_{1,2}=0,pi-branches, preserves 1/8 SUSY. We obtain eta/s=1/4pi for the uplift and the diffusion constant for types IIB/IIA backgrounds comes out to be ~1/T, for both limits. The D=11 SUGRA action up to O(R^4,|G_4|^2) is expected to receive dominant contributions near =0,pi due to poles. Introducing a small-angle cut-off c and using the =c,(pi-c)-local uplift the specific heat from the IR-finite part of the action (c-independent) turns out to be positive indicative of the thermodynamical stability of the uplift. An ALD-gravity-type interpretation can be given to the counter-terms for(i). Its verified that the black M3-brane entropy S r_h^3 from M-theoretic thermodynamical methods and the horizon areas of types IIB/IIA/M3-brane solutions.Comment: 1+58 pages, LaTeX; v4 some minor corrections, results unchange

    Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    Get PDF
    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed

    Study of the consistency of climatological products of Nimbus-7

    Get PDF
    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation

    Extranatural Inflation Redux

    Full text link
    The success of a given inflationary model crucially depends upon two features: its predictions for observables such as those of the Cosmic Microwave background (CMB) and its insensitivity to the unknown ultraviolet (UV) physics such as quantum gravitational effects. Extranatural inflation is a well motivated scenario which is insensitive to UV physics by construction. In this five dimensional model, the fifth dimension is compactified on a circle and the zero mode of the fifth component of a bulk U(1)U(1) gauge field acts as the inflaton. In this work, we study simple variations of the minimal extranatural inflation model in order to improve its CMB predictions while retaining its numerous merits. We find that it is possible to obtain CMB predictions identical to those of e.g. R+R2{\cal R} + {\cal R}^2 Starobinsky model of inflation and show that this can be done in the most minimal way by having two additional extra light fermionic species in the bulk, with the same U(1)U(1) charges. We then find the constraints that CMB observations impose on the parameters of the model.Comment: Journal version (to appear in Phy. Rev. D

    Computation and analyses of averaged monthly zonal albedos at the top of the atmosphere using Nimbus-7 ERB observed data

    Get PDF
    The Nimbus-7 ERB experiment measures the Earth's albedo from a satellite in a fixed Sun synchronous orbit. The data is obtained at a fixed time of the day for each latitude observed. For Earth Radiation Budget studies it is normally assumed that the observed scene is invariant during the day and that the albedo varies only with the solar zenith angle. This paper presents a technique for computing mean zonal albedos as a function of the albedo (A sub s) of cloud free atmosphere, the albedo (A sub c) of cloudy atmosphere and of the cloud fractions. The values of A sub s and A sub c are obtained from radiation transfer theory and climatological values of the surface and cloud albedos. The albedos are a function of the solar zenith angle, latitude and solar declination. The cloud fractions are measured from the Nimbus-7 ERB albedos. The present study shows the importance of taking into account latitude variations in surface types and in cloud cover
    corecore