3 research outputs found

    Strong Amplified Spontaneous Emission from High Quality GaAs<sub>1–<i>x</i></sub>Sb<sub><i>x</i></sub> Single Quantum Well Nanowires

    No full text
    Quantum confinement in semiconductor nanowires is of contemporary interest. Enhancing the quantum efficiency of quantum wells in nanowires and minimizing intrinsic absorption are necessary for reducing the threshold of nanowire lasers and are promising for wavelength tunable emitters and detectors. Here, we report on growth and optimization of GaAs<sub>1–<i>x</i></sub>Sb<sub><i>x</i></sub>/Al<sub>1–<i>y</i></sub>Ga<sub><i>y</i></sub>As quantum well heterostructures formed radially around pure zinc blende GaAs core nanowires. The emitted photon energy from GaAs<sub>0.89</sub>Sb<sub>0.11</sub> quantum well (1.371 eV) is smaller than the GaAs core, thus showing advantages over GaAs/Al<sub>1–<i>y</i></sub>Ga<sub><i>y</i></sub>As quantum well nanowires in photon emission. The high optical quality quantum well (internal quantum efficiency reaches as high as 90%) is carefully positioned so that the quantum well coincides with the maximum of the transverse electric (TE01) mode intensity profile. The obtained superior optical performance combined with the supported Fabry–Perot (F–P) cavity in the nanowire leads to the strong amplified spontaneous emission (ASE). Detailed studies of the amplified cavity mode are carried out by spatial–spectral photoluminescence (PL) imaging, where emission from nanowire is resolved both spatially and spectrally. Resonant emission is generated at nanowire ends and is polarized perpendicular to the nanowire, in agreement with the simulated polarization characteristics of the TE01 mode in the nanowire. The observation of strong ASE for single QW nanowire at room temperature shows the potential application of GaAs<sub>1–<i>x</i></sub>Sb<sub><i>x</i></sub> QW nanowires as low threshold infrared nanowire lasers

    Polarization Tunable, Multicolor Emission from Core–Shell Photonic III–V Semiconductor Nanowires

    No full text
    We demonstrate luminescence from both the core and the shell of III–V semiconductor photonic nanowires by coupling them to plasmonic silver nanoparticles. This demonstration paves the way for increasing the quantum efficiency of large surface area nanowire light emitters. The relative emission intensity from the core and the shell is tuned by varying the polarization of the excitation source since their polarization response can be independently controlled. Independent control on emission wavelength and polarization dependence of emission from core–shell nanowire heterostructures opens up opportunities that have not yet been imagined for nanoscale polarization sensitive, wavelength-selective, or multicolor photonic devices based on single nanowires or nanowire arrays

    Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing

    No full text
    We report the growth of stacking-fault-free and taper-free wurtzite InP nanowires with diameters ranging from 80 to 600 nm using selective-area metal–organic vapor-phase epitaxy and experimentally determine a quantum efficiency of ∼50%, which is on par with InP epilayers. We also demonstrate room-temperature, photonic mode lasing from these nanowires. Their excellent structural and optical quality opens up new possibilities for both fundamental quantum optics and optoelectronic devices
    corecore