31 research outputs found
Non-Local Control of Single Surface Plasmon
Quantum entanglement is a stunning consequence of the superposition
principle. This universal property of quantum systems has been intensively
explored with photons, atoms, ions and electrons. Collective excitations such
as surface plasmons exhibit quantum behaviors. For the first time, we report an
experimental evidence of non-local control of single plasmon interferences
through entanglement of a single plasmon with a single photon. We achieved
photon-plasmon entanglement by converting one photon of an entangled photon
pair into a surface plasmon. The plasmon is tested onto a plasmonic platform in
a Mach-Zehnder interferometer. A projective measurement on the polarization of
the photon allows the non-local control of the interference state of the
plasmon. Entanglement between particles of various natures paves the way to the
design of hybrid systems in quantum information networks.Comment: 6 pages, 3 figure
Revisiting quantum optics with single plasmons
The growing field of quantum plasmonics lies at the intersection between nanophotonics and quantum optics. QUantum plasmonics investigate the quantum properties of single surface plasmons, trying to reproduce fundamental and landmark quantum optics experiment that would benefit from the light-confinement properties of nanophotonic systems, thus paving the way towards the design of basic components dedicated to quantum experiments with sizes inferior to the diffraction limit. Several groups have recently reproduced fundamental quantum optics experiments with single surface plasmons polaritons (SPPs). We have investigated two situations of quantum interference of single SPPs on lossy beamsplitters : a plasmonic version of the Hong-Ou-Mandel experiment, and the observation of plasmonic N00N states interferences. We numerically designed and fabricated several beamsplitters that reveal new quantum interference scenarios, such as the coalescence and the anti-coalescence of SPPs, or quantum non-linear absorption. Our work show that losses can be seen as a new degree of freedom in the design of plasmonic devices
A comparison of constitutive models for describing the flow of uncured styrene-butadiene rubber
Uncured styrene-butadiene rubber (SBR) can be modelled as a viscoelastic material with at least two different relaxation mechanisms. In this paper we compare multi-mode constitutive models combining two viscoelastic modes (linear and/or nonlinear) in three possible ways. Our particular choice of the two modes was inspired by models originally developed to describe the response of asphalt binders. We select the model that best fits the experimental data obtained from a modified stress relaxation experiment in the torsional configuration of the plate-plate rheometer. The optimisation of the five model parameters for each model is achieved by minimising the weighted least-squares distance between experimental observations and the computer model output using a tree-structured Parzen estimator algorithm to find an initial guess, followed by further optimisation using the Nelder-Mead simplex algorithm. The results show that the model combining the linear mode and the nonlinear mode is the most suitable variant to describe the observed behavior of SBR in the given regime. The predictive capabilities of the three models are further examined in changed experimental and numerical configurations. Full data and code to produce the figures in this article are included as supplementary material
Revisiting quantum optics with single plasmons
The growing field of quantum plasmonics lies at the intersection between nanophotonics and quantum optics. QUantum plasmonics investigate the quantum properties of single surface plasmons, trying to reproduce fundamental and landmark quantum optics experiment that would benefit from the light-confinement properties of nanophotonic systems, thus paving the way towards the design of basic components dedicated to quantum experiments with sizes inferior to the diffraction limit. Several groups have recently reproduced fundamental quantum optics experiments with single surface plasmons polaritons (SPPs). We have investigated two situations of quantum interference of single SPPs on lossy beamsplitters : a plasmonic version of the Hong-Ou-Mandel experiment, and the observation of plasmonic N00N states interferences. We numerically designed and fabricated several beamsplitters that reveal new quantum interference scenarios, such as the coalescence and the anti-coalescence of SPPs, or quantum non-linear absorption. Our work show that losses can be seen as a new degree of freedom in the design of plasmonic devices
Investigation of the Sharkskin melt instability using optical Fourier analysis
An optical method allowing the characterization of melt flow instabilities typically occurring during an extrusion process of polymers and polymer compounds is presented. It is based on a camera‐acquired image of the extruded compound with a reference length scale. Application of image processing and transformation of the calibrated image to the frequency domain yields the magnitude spectrum of the instability. The effectiveness of the before mentioned approach is shown on Styrene‐butadiene rubber (SBR) compounds, covering a wide range of silica filler content, extruded through a Göttfert capillary rheometer. The results of the image‐based analysis are compared with the results from the sharkskin option, a series of highly sensitive pressure transducers installed inside the rheometer. A simplified version of the code used to produce the optical analysis results is included as supplementary material
Présentations poétiques du monde
International audienc
Présentations poétiques du monde
International audienc
Splicing Factor Spf30 Assists Exosome-Mediated Gene Silencing in Fission Yeast▿
Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways