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ABSTRACT   

The growing field of quantum plasmonics lies at the intersection between nanophotonics and quantum optics. QUantum 
plasmonics investigate the quantum properties of single surface plasmons, trying to reproduce fundamental and landmark 
quantum optics experiment that would benefit from the light-confinement properties of nanophotonic systems, thus 
paving the way towards the design of basic components dedicated to quantum experiments with sizes inferior to the 
diffraction limit. Several groups have recently reproduced fundamental quantum optics experiments with single surface 
plasmons polaritons (SPPs). We have investigated two situations of quantum interference of single SPPs on lossy 
beamsplitters : a plasmonic version of the Hong-Ou-Mandel experiment, and the observation of plasmonic N00N states 
interferences. We numerically designed and fabricated several beamsplitters that reveal new quantum interference 
scenarios, such as the coalescence and the anti-coalescence of SPPs, or quantum non-linear absorption. Our work show 
that losses can be seen as a new degree of freedom in the design of plasmonic devices. 
 
Keywords: Quantum plasmonics, single plasmon, quantum optics, losses, decoherence 
 

INTRODUCTION  
Surface plasmon polaritons (SPPs) are collective oscillations of electrons that propagate along a metal-dielectric 
interface [1]. Several groups have reproduced fundamental quantum-optics experiments with such surface plasmons 
instead of photons, both being bosons. Observation of single-plasmon states [2,3], wave-particle duality [4,5], 
preservation of entanglement of photons in plasmon-assisted transmission [6-8] and more recently, two-plasmon 
interference have been reported in a large variety of plasmonic circuits [3, 9-12]. The possibility to generate pairs of 
indistinguishable single plasmons (SPPs) is an important requirement for potential quantum information applications 
[13-15].  

When dealing with indistinguishable particles, the correlations at the output of a beam splitter are associated to the 
bosonic or fermionic character of the particles [16]. At first glance, the observation of coalescence appears to be a 
signature of the bosonic nature of SPPs or photons. However, it has been pointed out that anticoalescence can be 
observed with photons when using an antisymmetric polarization entangled state [17]. This behavior stems from the 
introduction of internal degrees of freedom in the wave function: the global photonic state remains symmetric but both 
the polarization state and the spatial state are antisymmetric. Hence, when a beam splitter is illuminated with this state 
and if the detectors are not sensitive to the polarization, the situation is similar to the fermionic case and output 
correlations reveal anticoalescence. This property has been used as a method of analysis of Bell states [18]. These ideas 
have been further used to mimick fermions with bosons [19]. We also note that anticoalescence of photons have been 
observed in the context of a quantum eraser experiment, which is also based on the interplay between the spatial state 
and the polarization state [20]. In all these works, it is assumed that the beam splitter is unitary and therefore, the phase 
difference between the reflection and the transmission factor is 90°. 
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expected from energy conservation arguments. The situation is different in our experiment; a single SPP is transmitted 
with probability |ݐ|ଶ , reflected with a probability |ݎ|ଶ , but can be absorbed or scattered with a probability 1 − ଶ|ݎ|  :ଶ. For a balanced SPBS, in presence of losses, r and t are constrained by the following inequality [13]|ݐ|−

 
ݐ|  ± ଶ|ݎ ≤ 1, (1) 
 
where the equality holds only if there are no losses. The previous relation releases all constraints on 2߮௥௧   . In other 
words, losses can here be considered as a new degree of freedom. It is therefore possible to design several beam splitters 
where the amplitude of r and t and the relative phase ߮௥௧  can be modified. As a direct consequence, interference fringes 
from both outputs of the BS can be found experiencing an arbitrary phase shift.  

Controlling those properties of the SPBS strongly affects the detection of events by the two SPCMs. It has been shown 
[21] that the coincidence detection probability, i.e. the probability for one particle pair to have its two particles emerging 
from separate outputs of the beam splitter can be expressed as: 

 

 , ܲ(1௔, 1௕) = ସ|ݐ| + ସ|ݎ| + 2ℜ(ݎଶݐଶ)(2) ܫ 

 

where a and b label the output ports of the beamsplitter, and I is an overlap integral between the two particles 
wavepackets. For non-overlapping wavepackets, I=0 and the previous relation reduces to: 

 

 . ௖ܲ௟(1௔, 1௕) = ସ|ݐ| +  ସ (3)|ݎ|

 

The particles impinging on the SPBS behave like two independent classical particles, as indicated by the subscript cl. For 
an optimal overlap between the particles (I=1), the coincidence probability can be written: 

 

  ௤ܲ௨(1௔, 1௕) = ଶݐ| + ଶ|ଶݎ = ௖ܲ௟(1௔, 1௕) + 2ℜ(ݎଶݐଶ) (4) 

 

where the subscript qu denotes the presence of the quantum interference term 2ℜ(ݎଶݐଶ)ܫ. 
We now consider two cases. If ݐ =  the probability ௤ܲ௨  reaches zero. This is the same antibunching result that is , ݎ݅±
obtained for a non-lossy beam splitter (15). This is the so-called HOM dip in the correlation function. If we now consider ݐ = |ݐ| and  ݎ± = |ݎ| = ଵଶ  we get ௤ܲ௨(1௔, 1௕) = 2 ௖ܲ௟(1௔, 1௕) . Here, we expect a peak in the correlation function. 

 

The plasmonic chips were designed by solving the electrodynamics equations with an in-house code based on the 
aperiodic Fourier modal method [30]. Numerical simulations allowed us to find the geometrical dimensions of the beam 
splitter required for the two previous configurations ݐ = ݐ or ݎ݅± = |ݐ| with ݎ± = |ݎ| = ଵଶ respectively, that is 25% of 
the incident energy is transmitted, 25% is reflected and the amount of non-radiative losses on the beamsplitters is 50%. 
We fabricated two corresponding samples denoted as samples I and II respectively. The features of each beam splitter 
are reported in Table 1. We characterized the phase difference between r and t by an interferometric method. We used 
the plasmonic beamsplitter as the output beam splitter of a Mach-Zehnder interferometer. We splitted an 806 nm-CW 
laser beam in this interferometer and recorded the interference fringes at both output ports of the setup when increasing 
the relative delay ߜுைெ . We then measured the average phase difference between the two signals recorded on the two 
output channels in order to get ߮௥௧. 
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Table 1. Dimensions of the plasmonic platform samples under study, as measured by a scanning electron microscope 
(width w and metal gap g) and atomic force microscope (groove depth h). Notations refer to Figure 2(c). The fourth 
line reports expected values for the reflection and transmission factors r and t based on the numerical simulations of the
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We now move to a second set of experiments dedicated to the study of plasmonic N00N states. These N00N states are of 
the form ۧ߰ہ = |୒,଴ۧା|଴,୒ۧ√ଶ , i.e. a superposition state where N particles are in one arm and none in the other arm of a two 
branch interferometer. N00N states are particularly interesting when performing quantum interferences since they offer 
the possibility to reduce phase measurement uncertainties below the shot noise limit by a factor ଵ√ே [33]. Here we report 
the first observation of interferences of plasmonic N00N states freely propagating along a gold–air interface and 
interfering on a lossy beamsplitter. In this work at the interface between plasmonics and quantum optics, we will study 
the interplay between quantum interferences, plasmonic confinement and losses. As opposed to quantum optics 
experiments in vacuum, losses are expected to play a key role in the plasmonic interferences for two reasons. First, 
propagation losses will be revisited for plasmonic N00N states. Second, we use a lossy beamsplitter which enables us to 
modify the phase difference between reflection and transmission coefficients. It has been shown that this effect may 
induce nonlinear absorption [16]. 

 

Upstream of the first stage, we generate pairs of orthogonally polarized photons at λ=806 nm thanks to a single photon 
down-conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal pumped by a laser diode 
at 403 nm. The photons of a single pair are separated and their polarizations are aligned along the same direction before 
being injected in the two inputs of a fibered beamsplitter (FBS). One of the input of this FBS is mounted on a translation 
stage that allows us to control the relative delay δHOM between both particles, such that this entire first part of the setup 
reproduces a standard photonic Hong–Ou–Mandel (HOM) experiment stage. When the position δHOM is chosen so that 
the delay between photons is set to zero, the two particles experience coalescence and the output two-particle state is 
now a N00N state: ۧ߰ہ = |2ଵ, 0ଶۧ + |0ଵ, 2ଶۧ√2  

 

where the subscripts 1 and 2 refer to the outputs of the beamsplitter. The plasmonic N00N state interferences are 
observed thanks to a second hybrid MZ interferometer that introduces a second delay δN00N. The outputs of the previous 
photonic HOM stage are now connected to the arms of the interferometer, each one being associated to an input of the 
previously mentionned plasmonic platform, where the quantum interference between plasmon states takes place. 

 

The coincidence detection probability can be computed from the expression of the N00N state and the beamsplitter 
relations linking the input modes 1 and 2 to the output modes 3 and 4. First we write the annihilation operators related to 
the beamsplitter modes.  ܽଷ = ଵܽݐ + ଶ݁௜ఝ ܽସܽݎ	 = ଵܽݎ +  ଶ݁௜ఝܽݐ	

 

where 	 ߮ = ߣே଴଴ேߜߨ2  

 

 is the relative phase delay introduced between the arms of the N00N interferometer. The coincidence detection 
probability can be expressed as: 

 ܲ(1ଷ, 1ସ) = ൻ߰ห ଷܰ ଷܰ෣ห߰ൿ 
where ଷܰ෢ = ܽଷறܽଷ and ସܰ෢ = ܽସறܽସ are the number operators of channels 3 and 4. By using the previous relations, 

we get: 
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 Fig 7. Fast Fourier transform of the raw coincidence counts of figure 6. The spectrum is plotted as a function of the 

inverse of the down-converted signal wavelength λ=806 nm. The two arrows are a guide to the eye indicating the 
contribution of the single plasmon (SP) states with a wavenumber 1/λ and of the N00N states at twice that 
wavenumber. 

 

 
 Fig. 8. Coincidence counts (squares) with error bars as a function of theMZinterferometer path difference δN00N when 

the contribution of SP states has been numerically filtered. The solid line is a sinusoid at twice the frequency than the 
incident light 

Two different sources of losses are inherent to the use of plasmons during interference experiments and have different 
consequences when studying N00N states. First of all, there are linear losses of surface plasmon upon propagation over a 
distance d . The question is therefore what are losses for a Fock state |ܰۧ with N particles. To get some insight into that 
question, we consider the phase variation ߮ = ݇݀  of a single particle state due to propagation over a distance d , with ݇ = ଶగఒ  the wavevector. As previously mentioned, this becomes  ߮ே଴଴ே = ݇ܰ݀  for the state |ܰۧ. Introducing losses by 

considering that the wavevector ݇ = ଶగఒ  is complex k = k' + ik'',we expect to observe a decay length of the state ߜ = ଵଶே௞ᇱᇱ, 
N times smaller than for a single particle state. We prove this result in [35]. The result can be interpreted with a naive 
picture: the transmission probability of each particle through d is given by ݁(ߜ/݀−)݌ݔ so that the transmission 
probability of the N particles is given by ݁(ߜ/݀ܰ−)݌ݔ. The second source of losses is due to the plasmonic beamsplitter 
itself. As experimentally shown the previous experiment, the presence of losses in the beamsplitter allows us tomodify 
the phase relation between the reflection and transmission factor. Depending on the phase relation of the input N00N 
state, one can deterministically obtain either a single photon state or a mixture of zero and two photon states at the 
output. This phenomenon has been called quantum nonlinear absorption. In this setup, evidence of being in such a 
coherent absorption regime is given by the reminiscent single plasmon oscillations in the inset of Fig. 4. Indeed, the 

Proc. of SPIE Vol. 10722  107220A-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/2/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

observed phase shift between signals from SPCMs A and B is close to 0 it is the direct consequence of the phase relation ݐ =  The in-phase evolution of the signals can be interpreted as the successive preferential transmission or absorption .ݎ±
of single particles. We can therefore assume that the evolution of the N00N interference signal follows an analogous 
scheme: when the maxima are reached, the output state mix preferentially contains two-particle states ( thus increasing 
the number of coincidences) . When the minima are reached, one gets more single particle states, thus reducing 
coincidence counts. 

 

II. CONCLUSION 
 

We have observed experimentally coalescence and anticoalescence of surface plasmons at a lossy beam splitter. The 
coalescence dip is obtained when orthogonality is achieved between r and t, thus reproducing the results expected with a 
lossless beamsplitter. In that case, the dip in the coincidence proves the bosonic nature of SPPs. The anticoalescence 
peak can be obtained when r=+/- t. This relation is allowed only in presence of 50% losses. When using a similar lossy 
beamsplitter to observe N00N state interferences, similar considerations lead to the observation of a quantum non-linear 
effect. In both situations, we experience quantum interference scenarios that affect lossy states, or in other workds, 
modify the output probabilities of two-particle states or one-particle states. It is thus possible to design components that 
are able to preferentially transmit only two-particle states or one-particle states. 
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