23 research outputs found

    Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures

    Get PDF
    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth

    Parathyroid Hormone Treatment Increases Fixation of Orthopedic Implants with Gap Healing: A Biomechanical and Histomorphometric Canine Study of Porous Coated Titanium Alloy Implants in Cancellous Bone

    Get PDF
    Parathyroid hormone (PTH) administered intermittently is a bone-building peptide. In joint replacements, implants are unavoidably surrounded by gaps despite meticulous surgical technique and osseointegration is challenging. We examined the effect of human PTH(1–34) on implant fixation in an experimental gap model. We inserted cylindrical (10 × 6 mm) porous coated titanium alloy implants in a concentric 1-mm gap in normal cancellous bone of proximal tibia in 20 canines. Animals were randomized to treatment with PTH(1–34) 5 μg/kg daily. After 4 weeks, fixation was evaluated by histomorphometry and push-out test. Bone volume was increased significantly in the gap. In the outer gap (500 μm), the bone volume fraction median (interquartile range) was 27% (20–37%) for PTH and 10% (6–14%) for control. In the inner gap, the bone volume fraction was 33% (26–36%) for PTH and 13% (11–18%) for control. At the implant interface, the bone fraction improved with 16% (11–20%) for PTH and 10% (7–12%) (P = 0.07) for control. Mechanical implant fixation was improved for implants exposed to PTH. For PTH, median (interquartile range) shear stiffness was significantly higher (PTH 17.4 [12.7–39.7] MPa/mm and control 8.8 [3.3–12.4] MPa/mm) (P < 0.05). Energy absorption was significantly enhanced for PTH (PTH 781 [595–1,198.5] J/m2 and control 470 [189–596] J/m2). Increased shear strength was observed but was not significant (PTH 3.0 [2.6–4.9] and control 2.0 [0.9–3.0] MPa) (P = 0.08). Results show that PTH has a positive effect on implant fixation in regions where gaps exist in the surrounding bone. With further studies, PTH may potentially be used clinically to enhance tissue integration in these challenging environments

    Combination of bone morphogenetic protein-2 plasmid DNA with chemokine

    No full text
    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration

    Local induction of inflammation affects bone formation

    No full text
    To explore the influence of inflammatory processes on bone formation, we applied a new in vivo screening model. Confined biological pockets were first created in rabbits as a response to implanted bone cement discs. These biomembrane pockets were subsequently used to study the effects of inflammatory stimuli on ectopic bone formation within biphasic calcium phosphate (BCP) constructs loaded with TNF-α, lipopolysaccharide (LPS) or lipoteichoic acid (LTA), all with or without bone morphogenetic protein (BMP)-2. Analysis of bone formation after 12 weeks demonstrated that the inflammatory mediators were not bone-inductive in combination with the BCP alone, but inhibited or enhanced BMP-induced bone formation. LPS was associated with a strong inhibition of bone formation by BMP-2, while LTA and TNF-α showed a positive interaction with BMP-2. Since the biomembrane pockets did not interfere with bone formation and prevented the leakage of pro-inflammatory compounds to the surrounding tissue, the biomembrane model can be used for in vivo approaches to study local inflammation in conjunction with new bone formation. Using this model, it was shown that the modulation of the inflammatory response could be beneficial or detrimental to the subsequent bone formation process. The co-delivery of inflammatory factors and bone-related growth factors should be further explored as a strategy to enhance the bone-forming efficacy of bone substitutes

    A Prospective, Randomized, Controlled, Multicenter Study of Osteogenic Protein-1 in InstrumentedPosterolateral Fusions Report on Safety and Feasibility

    No full text
    Study Design. A prospective, randomized, controlled, multicenter clinical study. Objective. To evaluate the safety and feasibility of osteogenic protein (OP)-1 in 1-level lumbar spine instrumented posterolateral fusions. Summary of Background Data. Instrumented posterolateral fusion with the use of autograft is a commonly performed procedure for a variety of spinal disorders. However, harvesting of bone from the iliac crest is associated with complications. A promising alternative for autograft are bone morphogenetic proteins. Methods. As part of a larger prospective, randomized, multicenter study, 36 patients were included, who received a 1-level instrumented posterolateral fusion of the lumbar spine. All patients had a degenerative or isthmic spondylolisthesis with symptoms of neurologic compression. There were 2 treatment arms: OP-1 combined with locally available bone from laminectomy (OP-1 group) or iliac crest autograft (autograft group). The primary outcome was the fusion rate based on a computed tomography scan after 1-year follow-up. The clinical outcome was measured using the Oswestry Disability Index. Additionally, the safety of OP-1 was evaluated by comparing the number and severity of adverse events that occurred between both groups. Results. Using strict criteria, fusion rates of 63% were found in the OP-1 group and 67% in the control group (P = 0.95). There was a decrease in Oswestry scores at subsequent postoperative time points compared with preoperative values (P < 0.001). There were no significant differences in the mean Oswestry scores between the study group and control group at any time point (P = 0.56). No product-related adverse events occurred. Conclusion. The results demonstrate that OP-1 combined with locally obtained autograft is a safe and effective alternative for iliac crest autograft in instrumented single-level posterolateral fusions of the lumbar spine. The main advantage of OP-1 is that it avoids morbidity associated with the harvesting of autogenous bone grafts from the iliac crest

    Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating

    No full text
    Contains fulltext : 118074.pdf (Publisher’s version ) (Closed access)The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary
    corecore