195 research outputs found

    Low Cost Removal Of Disperse Dyes From Aqueous Solution Using Palm Ash.

    Get PDF
    Palm oil and textile industries are important contributors to Malaysia's economic growth. However, these industries also generate various pollutants of the environment. This research explores the possibility using a low cost adsorbent i.e. ash produced from palm oil factory, for the removal of dyes from aqueous solution

    Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent

    Get PDF
    A facile chemical reduction method has been developed to fabricate ultrafine copper nanoparticles whose sizes can be controlled down to ca. 1 nm by using poly(N-vinylpyrrolidone) (PVP) as the stabilizer and sodium borohyrdride as the reducing agent in an alkaline ethylene glycol (EG) solvent. Transmission electron microscopy (TEM) results and UV–vis absorption spectra demonstrated that the as-prepared particles were well monodispersed, mostly composed of pure metallic Cu nanocrystals and extremely stable over extended period of simply sealed storage

    In Situ

    No full text

    Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    No full text
    Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs) by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cell
    corecore