50 research outputs found

    Estimating process capability index Cpm using a bootstrap sequential sampling procedure

    Full text link
    Construction of a confidence interval for process capability index CPM is often based on a normal approximation with fixed sample size. In this article, we describe a different approach in constructing a fixed-width confidence interval for process capability index CPM with a preassigned accuracy by using a combination of bootstrap and sequential sampling schemes. The optimal sample size required to achieve a preassigned confidence level is obtained using both two-stage and modified two-stage sequential procedures. The procedure developed is also validated using an extensive simulation study.<br /

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    A new direct detection electron scattering experiment to search for the X17 particle

    Full text link
    A new electron scattering experiment (E12-21-003) to verify and understand the nature of hidden sector particles, with particular emphasis on the so-called X17 particle, has been approved at Jefferson Lab. The search for these particles is motivated by new hidden sector models introduced to account for a variety of experimental and observational puzzles: excess in e+e−e^+e^- pairs observed in multiple nuclear transitions, the 4.2σ\sigma disagreement between experiments and the standard model prediction for the muon anomalous magnetic moment, and the small-scale structure puzzle in cosmological simulations. The aforementioned X17 particle has been hypothesized to account for the excess in e+e−e^+e^- pairs observed from the 8^8Be M1, 4^4He M0, and, most recently, 12^{12}C E1 nuclear transitions to their ground states observed by the ATOMKI group. This experiment will use a high resolution electromagnetic calorimeter to search for or set new limits on the production rate of the X17 and other hidden sector particles in the 3−603 - 60 MeV mass range via their e+e−e^+e^- decay (or γγ\gamma\gamma decay with limited tracking). In these models, the 1−1001 - 100 MeV mass range is particularly well-motivated and the lower part of this range still remains unexplored. Our proposed direct detection experiment will use a magnetic-spectrometer-free setup (the PRad apparatus) to detect all three final state particles in the visible decay of a hidden sector particle for an effective control of the background and will cover the proposed mass range in a single setting. The use of the well-demonstrated PRad setup allows for an essentially ready-to-run and uniquely cost-effective search for hidden sector particles in the 3−603 - 60 MeV mass range with a sensitivity of 8.9×\times10−8^{-8} - 5.8×\times10−9^{-9} to ϵ2\epsilon^2, the square of the kinetic mixing interaction constant between hidden and visible sectors.Comment: 6 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2108.1327

    Cross-over data supporting long-term antibiotic treatment in patients with painful lower urinary tract symptoms, pyuria and negative urinalysis

    Get PDF
    PURPOSE: To measure the effects of an unplanned, sudden cessation of treatment in an unselected group of patients with chronic painful LUTS managed with protracted antimicrobial treatment and to report these observational data collected from a cross-over process. MATERIALS AND METHODS: The imposition of a guideline resulted in the immediate cessation of antibiotic treatment in a cohort of patients with chronic painful LUTS and microscopic pyuria. Patients were assessed before treatment withdrawal, whilst off treatment, and following reinstatement. Outcome measures included a validated symptom score, microscopic enumeration of urinary white cells and uroepithelial cells, and routine urine culture. RESULTS: These patients had reported treatment-resistant, painful LUTS for a mean of 6.5 years before treatment at this centre. Treatment was stopped in 221 patients (female = 210; male = 11; mean age = 56 years; SD = 17.81). Sixty-six per cent of women were post-menopausal. After unplanned treatment cessation, 199 patients (90%; female = 188; male = 9) reported deterioration. Eleven patients required hospital care in association with disease recurrence, including acute urinary tract infection (UTI) and urosepsis. Symptom scores increased after cessation and recovered on reinitiating treatment (F = 33; df = 2; p < 0.001). Urinary leucocyte (F = 3.7; df = 2; p = 0.026) and urothelial cells counts mirrored symptomatic changes (F = 6.0; df = 2; p = 0.003). Routine urine culture results did not reflect changes in disease status. CONCLUSION: These data support the hypothesis that treating painful LUTS associated with pyuria with long-term antimicrobial courses, despite negative urine culture, is effective. The microscopy of fresh unspun, unstained urine to count white cells and epithelial cells offers a valid method of monitoring disease. An unplanned cessation of antibiotic therapy produced a resurgence of symptoms and lower urinary tract inflammation in patients with chronic LUTS, supporting an infective aetiology below the level of routine detection

    The EDDY Current Sensing of Gallium Arsenide Crystal Growth: Calculated Response

    No full text
    Gallium arsenide grown by the high pressure liquid encapsulated Czochralski (HPLEC) process suffers from a low yield of electrically useful material and widely varying opto-electronic properties. These types of problems are typical of emerging materials/new processes, and in this case, can be traced back to inadequate process control during crystal growth. In particular, it is important to measure and control local solidifications during crystal growth in order to maintain an optimum liquid-solid interface shape that results in single crystal solidification and more uniform electro-optic properties [1].</p

    Fabrication of CdS/CdTe-Based thin film solar cells using an electrochemical technique

    Get PDF
    Thin film solar cells based on cadmium telluride (CdTe) are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV) effect as well as making use of IR photons from the surroundings when fully optimised
    corecore