27 research outputs found

    Conditioned Medium Reconditions Hippocampal Neurons against Kainic Acid Induced Excitotoxicity: An In Vitro

    Get PDF
    Stem cell therapy is gaining attention as a promising treatment option for neurodegenerative diseases. The functional efficacy of grafted cells is a matter of debate and the recent consensus is that the cellular and functional recoveries might be due to “by-stander” effects of grafted cells. In the present study, we investigated the neuroprotective effect of conditioned medium (CM) derived from human embryonic kidney (HEK) cells in a kainic acid (KA) induced hippocampal degeneration model system in in vitro condition. Hippocampal cell line was exposed to KA (200 µM) for 24 hrs (lesion group) whereas, in the treatment group, hippocampal cell line was exposed to KA in combination with HEK-CM (KA + HEK-CM). We observed that KA exposure to cells resulted in significant neuronal loss. Interestingly, HEK-CM cotreatment completely attenuated the excitotoxic effects of KA. In HEK-CM cotreatment group, the cell viability was ~85–95% as opposed to 47% in KA alone group. Further investigation demonstrated that treatment with HEK-CM stimulated the endogenous cell survival factors like brain derived neurotrophic factors (BDNF) and antiapoptotic factor Bcl-2, revealing the possible mechanism of neuroprotection. Our results suggest that HEK-CM protects hippocampal neurons against excitotoxicity by stimulating the host’s endogenous cell survival mechanisms

    Differential Regulation of the Variations Induced by Environmental Richness in Adult Neurogenesis as a Function of Time: A Dual Birthdating Analysis

    Get PDF
    Adult hippocampal neurogenesis (AHN) augments after environmental enrichment (EE) and it has been related to some of the anxiolytic, antidepressant and neuroprotective effects of EE. Indeed, it has been suggested that EE specifically modulates hippocampal neurogenic cell populations over the course of time. Here we have used dual-birthdating to study two subpopulations of newborn neuron in mice (Mus musculus): those born at the beginning and at the end of enrichment. In this way, we demonstrate that while short-term cell survival is upregulated after an initial 1 week period of enrichment in 2 month old female mice, after long-term enrichment (2 months) neither cell proliferation nor the survival of the younger newly born cell populations are distinguishable from that observed in non-enriched control mice. In addition, we show that the survival of older newborn neurons alone (i.e. those born at the beginning of the enrichment) is higher than in controls, due to the significantly lower levels of cell death. Indeed, these parameters are rapidly adjusted to the sudden cessation of the EE conditions. These findings suggest both an early selective, long-lasting effect of EE on the neurons born in the initial stages of enrichment, and a quick response when the environment again becomes impoverished. Therefore, EE induces differential effects on distinct subpopulations of newborn neurons depending on the age of the immature cells and on the duration of the EE itself. The interaction of these two parameters constitutes a new, specific regulation of these neurogenic populations that might account for the long-term enrichment's behavioral effects

    Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

    Full text link
    corecore