4 research outputs found

    Evaluation of Micro-Tensile Bond Strength of Fibre Post with Titanium Dioxide Nanoparticles as Fillers in Experimental Dental Composite Resin

    No full text
    Background: The clinical success of post-core restorations is determined by the composite utilized and the strength of the post-core adhesion. The effectiveness of titanium dioxide nanoparticles (TiO2 NPs) as a multifunctional material with photo-induced activities and better mechanical characteristics are observed as particle size is reduced to under 50 nm. Aim: The purpose of this study is to determine the bond strength of fibre-reinforced composite (FRC) posts with TiO2 NP as fillers and to compare it with conventional composite resin core material. Materials and Methods: 30 single-rooted mandibular premolars were selected and routine root canal procedures were done. A quantity of 5% TiO2 NPs were synthesized and added as silanized filler to the experimental composite resin. Post space was prepared and fibre-reinforced composite (FRC) post luting was performed. The specimens were then grouped into the following groups: Group I consisted of the experimental composite resin containing 5% TiO2 fillers, Group II consisted of core X flow, and Group III consisted of Multicore Flow. All test groups were submitted for thermocycling. After this, the samples were tested for micro tensile bond strength. A stereomicroscope with a magnification of 20× was used to examine the fractured surfaces. The data were analysed using one-way ANOVA and Tukey HSD tests. Results: Statistical analysis revealed that Group I showed the highest mean bond strength value of 35.6180 Mpa. The results obtained with Group III showed the lowest mean bond strength value of 19.4690 Mpa. Adhesive failures were identified by stereomicroscopy of the fractured surfaces. Conclusion: The experimental composite resin comprising 5% TiO2 NP had a greater bond to the FRC post than other materials tested

    Evaluating the Effect of Tideglusib-Loaded Bioactive Glass Nanoparticles as a Potential Dentine Regenerative Material

    No full text
    Dental pulp treatment is the least intrusive procedure currently available for preserving the vitality of the pulp. Several studies are underway to improve the bioactivity of pulp capping materials. Tideglusib isa potent anti-inflammatory, antioxidant, and a regenerative drug developed against Alzheimer’s disease and has been shown to be effective in the treatment of dental cavities. However, its bioactive properties encapsulated within the nanoparticles as a component of pulp capping material are largely unknown. In this study, tideglusib-loaded bioactive glass nanoparticles were synthesized (tideglusib-BgNPs) and mixed at various concentrations into the calcium silicate cement to testits physiomechanical and bioactivitiescompared with biodentine (control). The calcium silicate cement with 10wgt% tideglusib-BgNPs showed comparable physiomechanical properties to that of biodentine. Additionally, the assessment of cytotoxicity and bioactivity (cell proliferation, wound healing, and cell migration assays) showed increased bioactivity in terms of better wound healing, increased proliferation, and better migration of human dental pulp stem cells than biodentine. These findings suggest new opportunities to use tideglusib-BgNPs in pulp therapy
    corecore