30 research outputs found

    Differential Evolution Biogeography Based Optimization for Linear Phase Fir Low Pass Filter Design

    Get PDF
    This paper presents an efficient way of designing Linear Phase Finite Impulse Response (FIR) Filter using hybrid Differential Evolution (DE) and Biogeography based optimization (BBO) algorithms. DE is a fast and robust evolutionary algorithm tool for global optimization. On the other hand, BBO uses migration operator to share information among solutions. FIR filter of order 20 is designed using fitness function that is based on minimization of maximum ripples in pass band and stop band of the filter response. The result obtained from Differential Evolution Biogeography Based Optimization (DEBBO) for the FIR low pass filter is good in convergence speed and solution quality in terms of pass band ripple, stop band ripple, transition width. Keywords: DE, BBO, DEBBO, Convergence, FIR Filter

    Pea Seed Proteins: A Nutritional and Nutraceutical Update

    Get PDF
    Grain legumes are well known as staple sources of soluble protein worldwide. Pea is essentially the most quickly growing crop for immediate human consumption and has the potential for higher effect as being a protein supply for foods processing apps. Pea seeds are an essential source of plant-based proteins. The better acceptance of pea protein-rich food is due to pea manifold attributes, excellent functional qualities, high vitamin value, accessibility, and comparatively small cost. Pea proteins are not merely nutritional amino acids but are an indispensable source of bioactive peptides that offer health benefits. This chapter focuses on the present information of isolation methods, extraction, and of seed proteins in pea. Overall, we believe that analogous research and advancement on pea proteins would be required for further more substantial increase in pea protein utilization is envisaged

    A Pilot Study Comparing HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas by Whole Exome Sequencing.

    Get PDF
    Background. Next-generation sequencing of cancers has identified important therapeutic targets and biomarkers. The goal of this pilot study was to compare the genetic changes in a human papillomavirus- (HPV-)positive and an HPV-negative head and neck tumor. Methods. DNA was extracted from the blood and primary tumor of a patient with an HPV-positive tonsillar cancer and those of a patient with an HPV-negative oral tongue tumor. Exome enrichment was performed using the Agilent SureSelect All Exon Kit, followed by sequencing on the ABI SOLiD platform. Results. Exome sequencing revealed slightly more mutations in the HPV-negative tumor (73) in contrast to the HPV-positive tumor (58). Multiple mutations were noted in zinc finger genes (ZNF3, 10, 229, 470, 543, 616, 664, 638, 716, and 799) and mucin genes (MUC4, 6, 12, and 16). Mutations were noted in MUC12 in both tumors. Conclusions. HPV-positive HNSCC is distinct from HPV-negative disease in terms of evidence of viral infection, p16 status, and frequency of mutations. Next-generation sequencing has the potential to identify novel therapeutic targets and biomarkers in HNSCC

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC

    Secure Trust Based Key Management Routing Framework for Wireless Sensor Networks

    No full text
    Security is always a major concern in wireless sensor networks (WSNs). Several trust based routing protocols are designed that play an important role in enhancing the performance of a wireless network. However they still have some disadvantages like limited energy resources, susceptibility to physical capture, and little protection against various attacks due to insecure wireless communication channels. This paper presents a secure trust based key management (STKF) routing framework that establishes a secure trustworthy route depending upon the present and past node to node interactions. This route is then updated by isolating the malicious or compromised nodes from the route, if any, and a dedicated link is created between every pair of nodes in the selected route with the help of “q” composite random key predistribution scheme (RKPS) to ensure data delivery from source to destination. The performance of trust aware secure routing framework (TSRF) is compared with the proposed routing scheme. The results indicate that STKF provides an effective mechanism for finding out a secure route with better trustworthiness than TSRF which avoids the data dropping, thereby increasing the data delivery ratio. Also the distance required to reach the destination in the proposed protocol is less hence effectively utilizing the resources

    Replacement of rice-wheat cropping system with alternative diversified systems concerning crop productivity and their impact on soil carbon and nutrient status in soil profile of north-west India

    No full text
    AbstractThe depth-wise depletion of soil organic carbon (OC), macro, micro, and secondary nutrients under the rice-wheat system has resulted in multi-nutrient deficiencies and a decline in crop productivity, emphasizing the replacement of rice-wheat with alternate cropping systems like maize-wheat, cotton-wheat, soybean-wheat, and moongbean-wheat to restore soil fertility and productivity. Long-term investigations (since 2016) revealed that there was a depth-wise decline in pH, EC, OC, and nutrients in soil profile (Udic Ustrochept, Inceptisols) among different cropping systems. The practice of deep-rooted cropping systems (maize-wheat and cotton-wheat) led to maximum OC, soluble calcium, and magnesium, while legume-based systems (especially soybean-wheat) led to maximum available phosphorus (30.86 kg ha−1), boron (0.49 mg kg−1), and DTPA-zinc (1.82 mg kg−1) in soil profile (0–120 cm). This system also led to the maximum surface soil OC, available phosphorus, soluble magnesium, DTPA-zinc, and boron. From the production point of view, soybean-wheat system (115.65 q ha−1) led to higher system grain productivity as compared to rice-wheat system (109.60 q ha−1). Therefore, the practice of alternative cropping systems like soybean-wheat and cotton-wheat helps in the build-up of nutrient status by playing a pivotal role in influencing the surface and depth-wise distribution of organic carbon and nutrients in the soil

    Removal of Biomass and Nutrients by Weeds and Direct-Seeded Rice under Conservation Agriculture in Light-Textured Soils of North-Western India

    No full text
    The escalating scarcity of irrigation water, transplantation of rice on light-textured soils and labour cost acted as major drivers for the transition towards direct-seeded rice (DSR) cultivation from the conventionally flooded transplanting system. Despite these advantages, DSR is a challenge in light texture soil due to heavy weed infestation and a slight decline in crop yield. The weeds compete for nutrients and have an adverse effect on the growth and yield of crops. Hence, to assess the removal of macro and micronutrients by weeds and direct-seeded rice, a field experiment was carried out on sandy loam soil for two consecutive Kharif seasons (2018 and 2019). Three treatments from rice, namely: DSR under zero tillage (DSR-ZT), DSR under conventional tillage (DSR-CT) and DSR under reduced tillage (DSR-RT) were taken as main plots with three tillage treatments in wheat, namely: Conventional tillage without rice straw (CTW-R), Zero tillage without rice straw (ZTW-R) and Zero tillage with straw as mulch using Happy Seeder (ZTW+R) as subplots, replicated thrice. Among the rice establishment methods, DSR-RT showed an edge in terms of rice grain and straw yield (6.18 and 8.14 Mg ha−1, respectively) as well as macro- and micronutrient uptake by rice. Under management practices, ZTW+R proved as an efficient strategy in terms of yield and nutrient uptake by crops. The contribution of weeds towards biomass production was maximum under the ZTW-R (9.44%) treatment followed by DSR-ZT (7.72%). The nutrient budgeting showed that macro- and micronutrient removal by weeds was minimum under reduced tillage (24.51 and 50.35%, respectively), whereas it was 21.88 and 44.87% when wheat was grown under conventional tillage without rice straw. In overall, the research study concluded that weeds on an average remove 25.65 % macronutrients (N, P, K) and 51.47% of micronutrients (Zn, Cu, Fe and Mn) in DSR under rice-wheat cropping system
    corecore