975 research outputs found

    Reduction of mesh sensitivity in continuum damage mechanics

    Get PDF
    Continuum damage theories can be applied to simulate the failure behaviour of engineering constructions. In the constitutive equations of the material a damage parameter is incorporated. A damage criterion and a damage evolution law are postulated and quantified based on experimental data. The elaboration of the mathematical formulation is performed by common finite element techniques. Without special precautions the numerical results appear to be unacceptably dependent on the measure of the spatial discretization. It is shown that a simple but effective procedure leads to the conservation of objectivity

    Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses’ Users During Normal Walking

    Get PDF
    This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses’ users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis’ user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis’ user shows a stable gait, with a forward dynamic comparable to the healthy subject’s, yet using higher muscles’ forces. Even though the computed muscles’ forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses
    • …
    corecore