16 research outputs found

    An Interface Setup Optimization Method Using a Throughput Estimation Model for Concurrently Communicating Access Points in a Wireless Local Area Network

    Get PDF
    The IEEE 802.11 wireless local-area network (WLAN) has been deployed around the globe as a major Internet access medium due to its low cost and high flexibility and capacity. Unfortunately, dense wireless networks can suffer from poor performance due to high levels of radio interference resulting from adjoining access points (APs). To address this problem, we studied the AP transmission power optimization method, which selects the maximum or minimum power supplied to each AP so that the average signal-to-interference ratio (SIR) among the concurrently communicating APs is maximized.However, this method requires measurements of receiving signal strength (RSS) under all the possible combinations of powers. It may need intolerable loads and time as the number of APs increases. It also only considers the use of channel bonding (CB), although non-CB sometimes achieves higher performance under high levels of interference. In this paper, we present an AP interface setup optimization method using the throughput estimation model for concurrently communicating APs. The proposed method selects CB or non-CB in addition to the maximum or minimum power for each AP. This model approach avoids expensive costs of RSS measurements under a number of combinations. To estimate the RSS at an AP from another AP or a host, the model needs the distance and the obstacles between them, such as walls. Then, by calculating the estimated RSS with the model and calculating the SIR from them, the AP interface setups for a lot of APs in a large-scale wireless network can be optimized on a computer in a very short time. For evaluation, we conducted extensive experiments using Raspberry Pi for APs and Linux PCs for hosts under 12 network topologies in three buildings at Okayama University, Japan, and Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. The results confirm that the proposed method selects the best AP interface setup with the highest total throughput in any topology

    An Application of Throughput Request Satisfaction Method for Maximizing Concurrent Throughput in WLAN for IoT Application System

    Get PDF
    With the wide applications of the Internet of Things (IoT) in smart home systems, IEEE 802.11n Wireless Local Area Networks (WLANs) have become a frequently chosen communication technology due to their adaptability and affordability. In a high-density network of devices such as the smart home scenerio, a host often meets interferences from other devices and unequal Received Signal Strength (RSS) from Access Points (APs). This results in throughput unfairness/insufficiency problems between hosts communicating concurrently in WLAN. Previously, we have studied the throughput request satisfaction method to address this problem. It calculates the target throughput from measured single and concurrent throughputs of hosts and controls the actual throughput at this target one by applying traffic shaping at the AP. However, the insufficiency problem of maximizing the throughput is not solved due to interferences from other hosts. In this paper, we present an extension of the throughput request satisfaction method to maximize the throughput of a high-priority host under concurrent communications. It recalculates the target throughput to increase the actual throughput as much as possible while the other hosts satisfy the least throughput. For evaluations, we conduct experiments using the test-bed system with Raspberry Pi as the AP devices in several topologies in indoor environments. The results confirm the effectiveness of our proposal

    Construction of a Spatial Equalization Assessment System for Medical Facilities

    No full text
    The spatial equalization of medical facilities can alleviate the wastage of medical resources and improve the efficiency of medical services. Therefore, it is necessary to carry out spatially balanced planning and assessment of medical facilities in cities. Existing studies on the balanced planning, design, and evaluation of medical facilities have been conducted from the perspective of hospital buildings in terms of spatial utilization efficiency, service satisfaction, and their physical environment on one hand, and from the perspective of regional planning of medical facilities in terms of spatial accessibility to medical facilities and the suitability of medical facilities to the social environment on the other hand. This study hopes to break down the boundaries of each perspective and effectively integrate the architecture, planning, and social well-being of medical facilities, taking spatial equilibrium as the core, in order to establish a spatial equilibrium system for medical facilities and achieve a spatial equilibrium-based assessment of the current state of medical facilities. First, the factors influencing the spatial equilibrium of hospital buildings with the support of the system and environment of hospital buildings are determined. Second, the indicators of the spatial equilibrium of hospital buildings are extracted through the consideration of influencing factors, and the indicator weights are determined by discussing the degree to which they contribute to the influence of the operation of hospital building spatial equilibrium systems, thus forming a system of equilibrium indicators for hospital buildings. Finally, a spatial equilibrium evaluation model for hospital buildings is established to assess the effects of equilibrium. The results obtained in this study provide insights into the regional planning of medical facilities and the design of hospital buildings

    INSUS: Indoor Navigation System Using Unity and Smartphone for User Ambulation Assistance

    Get PDF
    Currently, outdoor navigation systems have widely been used around the world on smartphones. They rely on GPS (Global Positioning System). However, indoor navigation systems are still under development due to the complex structure of indoor environments, including multiple floors, many rooms, steps, and elevators. In this paper, we present the design and implementation of the Indoor Navigation System using Unity and Smartphone (INSUS). INSUS shows the arrow of the moving direction on the camera view based on a smartphone's augmented reality (AR) technology. To trace the user location, it utilizes the Simultaneous Localization and Mapping (SLAM) technique with a gyroscope and a camera in a smartphone to track users' movements inside a building after initializing the current location by the QR code. Unity is introduced to obtain the 3D information of the target indoor environment for Visual SLAM. The data are stored in the IoT application server called SEMAR for visualizations. We implement a prototype system of INSUS inside buildings in two universities. We found that scanning QR codes with the smartphone perpendicular in angle between 60 degrees and 100 degrees achieves the highest QR code detection accuracy. We also found that the phone's tilt angles influence the navigation success rate, with 90 degrees to 100 degrees tilt angles giving better navigation success compared to lower tilt angles. INSUS also proved to be a robust navigation system, evidenced by near identical navigation success rate results in navigation scenarios with or without disturbance. Furthermore, based on the questionnaire responses from the respondents, it was generally found that INSUS received positive feedback and there is support to improve the system

    Complete chloroplast genome and evolutionary analysis of Acer paihengii (Sapindales:Aceraceae)

    No full text
    In this study, the complete chloroplast genome of Acer paihengii, a tree species native to China, was sequenced and assembled through second-generation sequencing. The complete chloroplast genome of A. paihengii is 155,967 bp in length with a typical quadripartite structure, encompassing 130 genes including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis of 22 related species indicated that A. paihengii was more closely related to Acer coriaceifolium and Acer sino-oblongum

    DCSST Multi-Modular Equalization Scheme Based on Distributed Control

    No full text
    As an important part of the DC micro-grid, DC solid-state transformers (DCSST) usually use a dual-loop control that combines the input equalization and output voltage loop. This strategy fails to ensure output equalization when the parameters of each dual active bridge (DAB) converter module are inconsistent, thus reducing the operational efficiency of the DCSST. To solve the above problems, a DCSST-balancing control strategy based on loop current suppression is presented. By fixing the phase-shifting angle within the bridge and adjusting the phase-shifting angle between bridges, the circulation current of each DAB converter module is reduced. Based on the double-loop control of the DAB, five controllers are nested outside each DAB submodule to achieve distributed control of the DCSST. The proposed control strategy can reduce the system circulation current with different circuit parameters of the submodules, ensure the balance of input voltage and output current of each submodule, and increase the robustness of the system. The simulation results verify the validity of the proposed method

    DCSST Multi-Modular Equalization Scheme Based on Distributed Control

    No full text
    As an important part of the DC micro-grid, DC solid-state transformers (DCSST) usually use a dual-loop control that combines the input equalization and output voltage loop. This strategy fails to ensure output equalization when the parameters of each dual active bridge (DAB) converter module are inconsistent, thus reducing the operational efficiency of the DCSST. To solve the above problems, a DCSST-balancing control strategy based on loop current suppression is presented. By fixing the phase-shifting angle within the bridge and adjusting the phase-shifting angle between bridges, the circulation current of each DAB converter module is reduced. Based on the double-loop control of the DAB, five controllers are nested outside each DAB submodule to achieve distributed control of the DCSST. The proposed control strategy can reduce the system circulation current with different circuit parameters of the submodules, ensure the balance of input voltage and output current of each submodule, and increase the robustness of the system. The simulation results verify the validity of the proposed method

    Identification of Priority Implementation Areas and Configuration Types for Green Infrastructure Based on Ecosystem Service Demands in Metropolitan City

    No full text
    During urbanization in developing countries, fragmentation of green infrastructure due to increasing populations and the expansion of construction land leads to an extremely serious imbalance between the supply and demand for urban ecosystem services. In this study, the central city of Zhengzhou, a central city in central China, was selected as the study area and the excessive demand for six ecosystem services, namely, air purification, flood regulation, heat regulation, hydrological regulation, CO2 sequestration and recreational services, was quantitatively evaluated. The entropy method was used to calculate the weights of various ecosystem services, and spatial overlay analysis was performed to obtain the comprehensive ecosystem service excessive demand. Finally, bivariate spatial autocorrelation analysis was used to explore the response of population density to comprehensive excessive demand for ESs. The results of this study indicate that: (1) The most prevalent need is for more CO2 regulation service throughout the study area. (2) Except for hydrological regulation service, the spatial distribution of the remaining highly excessive ecosystem service demands are mostly concentrated in old neighborhoods. (3) Of the six excessively demanded economic services, rainwater regulation obtained the greatest weight, reflecting the poor urban infrastructure configuration for countering the rapidly increasing threat of flooding caused by climate change in the city. (4) The comprehensive ecosystem service excessive demand results show that there are eight priority green infrastructure implementation blocks in the central city of Zhengzhou. (5) There were three agglomeration types between population density and comprehensive excessive demand for ESs: high-high type, low-high type and low-low type. The spatial distribution characteristics of population density and comprehensive ES demand are positively correlated. The results of this study could help to provide information for decision making when delineating the priority areas and types of green infrastructure implementation in developing cities

    Vitellogenin of Fujian oyster, Crassostrea angulata: Synthesized in the ovary and controlled by estradiol-17 beta

    No full text
    National Basic Research Program of China [2010CB126403]; Program for Changjiang Scholars and Innovative Research Team in the Xiamen University [IRT0941]; Earmarked Fund for Modern Agro-industry Technology Research System [CARS-48]; Programme of Introducing Talents of Discipline to Universities [B07034]In this study, we cloned a full-length cDNA encoding vitellogenin (Vg) in the Fujian oyster Crassostrea angulata. The complete Vg cDNA consists of 5160 nucleotides with a long open reading frame encoding 1641 amino acid residues. The deduced amino acid sequence shared high similarity with the Vgs of other mollusc, fish, nematode and arthropod species, particularly in the N-terminal region. We analyzed the spatiotemporal expression of caVg transcripts by Real-time Quantitative PCR. In common with other mollusc Vgs, the caVg gene was expressed primarily in the ovary, and the levels were 348 and 177 times higher in maturation and ripeness stages (P < 0.01), respectively, than in the partially spent stage. There was negligible expression in male oysters. In situ hybridization analysis further localized caVg mRNA to the follicle cells (also named auxiliary cells) surrounding the oocytes in the ovary. Moreover, in vivo waterborne exposure experiments in early gametogenesis oysters showed that estradiol-17 beta (E-2) administration resulted in a significant increase in caVg mRNA expression. We conclude that caVg is synthesized in the follicle cell surrounding the vitellogenic oocyte in C. angulata, and directly passed to oocytes through the extracellular space without mediation through hemolymph. Also, we hypothesize that this process is mediated by E-2 in a dose dependent. (C) 2014 Elsevier Inc. All rights reserved
    corecore