12 research outputs found

    Adjuvant chemotherapy in small node-negative triple-negative breast cancer

    Get PDF
    Background: Recommendations on adjuvant chemotherapy in pT1N0M0 triple-negative breast cancer (TNBC) differ among international guidelines owing to lack of randomized trial data. We evaluated associations of adjuvant chemotherapy with a long-term outcome in a population-based cohort of pT1N0M0 TNBC. Methods: All patients diagnosed with pT1N0M0 TNBC in the Netherlands between 2005 and 2016 were identified from the Netherlands Cancer Registry. Patient, tumour and treatment characteristics were recorded. The date and cause of death were obtained from Statistics Netherlands. We used multivariable Cox regression models to evaluate associations of adjuvant chemotherapy with breast cancer–specific survival (BCSS) and overall survival (OS), adjusted for baseline characteristics and performed sensitivity analyses using propensity score (PS) weighting. Results: We identified 4366 patients: 284 with pT1a, 923 with pT1b and 3159 with pT1c tumours. Adjuvant chemotherapy was administered in 53% of patients. Patients receiving chemotherapy had more unfavourable baseline characteristics including younger age, larger tumours and higher tumour grade. At 8.2 years median follow-up (interquartile range = 5.8–10.9), 671 patients had died, of whom 311 because of breast cancer. After adjustment for baseline characteristics, chemotherapy was associated with improved BCSS (adjusted hazard ratio [aHR] = 0.65; 95% confidence interval [CI] = 0.48–0.89). The effect of chemotherapy differed by tumour size (pT1a: aHR = 4.28, 95% CI = 1.12–16.44; pT1b: aHR = 1.12, 95% CI = 0.51–2.49; pT1c: aHR = 0.60, 95% CI = 0.43–0.82; pinteraction = 0.02). Findings for OS were in line with BCSS results. PS-weighting analysis confirmed the results of the primary analysis. Conclusions: Adjuvant chemotherapy is associated with better BCSS and OS in pT1N0M0 TNBC. Better outcome is most evident in pT1c tumours and may not outweigh harm in pT1a/pT1b tumours

    Reply to R. Ferraldeschi et al

    No full text
    Development and application of statistical models for medical scientific researc

    The Effect of Tamoxifen Dose Increment in Patients With Impaired CYP2D6 Activity

    No full text
    The effect of tamoxifen dose elevation on endoxifen serum concentration was investigated in patients with reduced CYP2D6 activity resulting from genetic variation and/or CYP2D6 inhibitor use. Additionally, baseline differences in endoxifen concentrations between the different CYP2D6 phenotypes were studied. Patients, treated with tamoxifen 20 mg once daily (QD) for at least 4 weeks, were classified as phenotypic extensive (EM), intermediate (IM), or poor (PM) metabolizer based on their genotype and comedication. In patients with an IM or PM phenotype, the tamoxifen dose was increased to 40 mg QD for 4 weeks. Tamoxifen, 4-OH-tamoxifen, N-desmethyltamoxifen, and endoxifen serum concentrations were measured at baseline and 4 weeks after the dose increment. Side effects of tamoxifen were assessed using the validated Functional Assessment of Cancer Therapy-Endocrine Symptom subscale (FACT-ESS-19). The median baseline endoxifen concentration differed between EMs (11.4 mcg/L: n = 19), IMs (8.3 mcg/L: n = 16), and PMs (4.0 mcg/L: n = 7), P = 0.040. Tamoxifen dose elevation significantly increased the median endoxifen concentrations in 12 IMs from 9.5 to 17.4 mcg/L (P < 0.001) and in 4 PMs from 3.8 to 7.8 mcg/L (P = 0.001), without influencing median FACT-ESS-19 scores. Raising the tamoxifen dose to 40 mg QD significantly increased endoxifen concentrations in IMs and PMs without increasing side effects. The tamoxifen dose increment in PMs was insufficient to reach endoxifen concentrations equal to those observed in EMs. Future studies will clarify the direct effect of endoxifen exposure on tamoxifen efficacy and may reveal a threshold endoxifen concentration that is critical for its efficac

    RNA Biomarkers as a Response Measure for Survival in Patients with Metastatic Castration-Resistant Prostate Cancer

    No full text
    Treatment evaluation in metastatic castration-resistant prostate cancer is challenging. There is an urgent need for biomarkers to discriminate short-term survivors from long-term survivors, shortly after treatment initiation. Thereto, the added value of early RNA biomarkers on predicting progression-free survival (PFS) and overall survival (OS) were explored. The RNA biomarkers: KLK3 mRNA, miR-375, miR-3687, and NAALADL2-AS2 were measured in 93 patients with mCRPC, before and 1 month after start of first-line abiraterone acetate or enzalutamide treatment, in two prospective clinical trials. The added value of the biomarkers to standard clinical parameters in predicting PFS and OS was tested by Harell&rsquo;s C-index. To test whether the biomarkers were independent markers of PFS and OS, multivariate Cox regression was used. The best prediction model for PFS and OS was formed by adding miR-375 and KLK3 (at baseline and 1 month) to standard clinical parameters. Baseline miR-375 and detectable KLK3 after 1 month of therapy were independently related to shorter PFS, which was not observed for OS. In conclusion, the addition of KLK3 and miR-375 (at baseline and 1 month) to standard clinical parameters resulted in the best prediction model for survival assessment

    DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer : a prospective safety analysis

    No full text
    Background: Fluoropyrimidine treatment can result in severe toxicity in up to 30% of patients and is often the result of reduced activity of the key metabolic enzyme dihydropyrimidine dehydrogenase (DPD), mostly caused by genetic variants in the gene encoding DPD (DPYD). We assessed the effect of prospective screening for the four most relevant DPYD variants (DPYD*2A [rs3918290, c.1905+1G>A, IVS14+1G>A], c.2846A>T [rs67376798, D949V], c.1679T>G [rs55886062, DPYD*13, I560S], and c.1236G>A [rs56038477, E412E, in haplotype B3]) on patient safety and subsequent DPYD genotype-guided dose individualisation in daily clinical care. Methods: In this prospective, multicentre, safety analysis in 17 hospitals in the Netherlands, the study population consisted of adult patients (≥18 years) with cancer who were intended to start on a fluoropyrimidine-based anticancer therapy (capecitabine or fluorouracil as single agent or in combination with other chemotherapeutic agents or radiotherapy). Patients with all tumour types for which fluoropyrimidine-based therapy was considered in their best interest were eligible. We did prospective genotyping for DPYD*2A, c.2846A>T, c.1679T>G, and c.1236G>A. Heterozygous DPYD variant allele carriers received an initial dose reduction of 25% (c.2846A>T and c.1236G>A) or 50% (DPYD*2A and c.1679T>G), and DPYD wild-type patients were treated according to the current standard of care. The primary endpoint of the study was the frequency of severe (National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03 grade ≥3) overall fluoropyrimidine-related toxicity across the entire treatment duration. We compared toxicity incidence between DPYD variant allele carriers and DPYD wild-type patients on an intention-to-treat basis, and relative risks (RRs) for severe toxicity were compared between the current study and a historical cohort of DPYD variant allele carriers treated with full dose fluoropyrimidine-based therapy (derived from a previously published meta-analysis). This trial is registered with ClinicalTrials.gov, number NCT02324452, and is complete. Findings: Between April 30, 2015, and Dec 21, 2017, we enrolled 1181 patients. 78 patients were considered non-evaluable, because they were retrospectively identified as not meeting inclusion criteria, did not start fluoropyrimidine-based treatment, or were homozygous or compound heterozygous DPYD variant allele carriers. Of 1103 evaluable patients, 85 (8%) were heterozygous DPYD variant allele carriers, and 1018 (92%) were DPYD wild-type patients. Overall, fluoropyrimidine-related severe toxicity was higher in DPYD variant carriers (33 [39%] of 85 patients) than in wild-type patients (231 [23%] of 1018 patients; p=0·0013). The RR for severe fluoropyrimidine-related toxicity was 1·31 (95% CI 0·63–2·73) for genotype-guided dosing compared with 2·87 (2·14–3·86) in the historical cohort for DPYD*2A carriers, no toxicity compared with 4·30 (2·10–8·80) in c.1679T>G carriers, 2·00 (1·19–3·34) compared with 3·11 (2·25–4·28) for c.2846A>T carriers, and 1·69 (1·18–2·42) compared with 1·72 (1·22–2·42) for c.1236G>A carriers. Interpretation: Prospective DPYD genotyping was feasible in routine clinical practice, and DPYD genotype-based dose reductions improved patient safety of fluoropyrimidine treatment. For DPYD*2A and c.1679T>G carriers, a 50% initial dose reduction was adequate. For c.1236G>A and c.2846A>T carriers, a larger dose reduction of 50% (instead of 25%) requires investigation. Since fluoropyrimidines are among the most commonly used anticancer agents, these findings suggest that implementation of DPYD genotype-guided individualised dosing should be a new standard of care. Funding: Dutch Cancer Society

    DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer : a prospective safety analysis

    No full text
    BACKGROUND: Fluoropyrimidine treatment can result in severe toxicity in up to 30% of patients and is often the result of reduced activity of the key metabolic enzyme dihydropyrimidine dehydrogenase (DPD), mostly caused by genetic variants in the gene encoding DPD (DPYD). We assessed the effect of prospective screening for the four most relevant DPYD variants (DPYD*2A [rs3918290, c.1905+1G>A, IVS14+1G>A], c.2846A>T [rs67376798, D949V], c.1679T>G [rs55886062, DPYD*13, I560S], and c.1236G>A [rs56038477, E412E, in haplotype B3]) on patient safety and subsequent DPYD genotype-guided dose individualisation in daily clinical care. METHODS: In this prospective, multicentre, safety analysis in 17 hospitals in the Netherlands, the study population consisted of adult patients (≥18 years) with cancer who were intended to start on a fluoropyrimidine-based anticancer therapy (capecitabine or fluorouracil as single agent or in combination with other chemotherapeutic agents or radiotherapy). Patients with all tumour types for which fluoropyrimidine-based therapy was considered in their best interest were eligible. We did prospective genotyping for DPYD*2A, c.2846A>T, c.1679T>G, and c.1236G>A. Heterozygous DPYD variant allele carriers received an initial dose reduction of 25% (c.2846A>T and c.1236G>A) or 50% (DPYD*2A and c.1679T>G), and DPYD wild-type patients were treated according to the current standard of care. The primary endpoint of the study was the frequency of severe (National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03 grade ≥3) overall fluoropyrimidine-related toxicity across the entire treatment duration. We compared toxicity incidence between DPYD variant allele carriers and DPYD wild-type patients on an intention-to-treat basis, and relative risks (RRs) for severe toxicity were compared between the current study and a historical cohort of DPYD variant allele carriers treated with full dose fluoropyrimidine-based therapy (derived from a previously published meta-analysis). This trial is registered with ClinicalTrials.gov, number NCT02324452, and is complete. FINDINGS: Between April 30, 2015, and Dec 21, 2017, we enrolled 1181 patients. 78 patients were considered non-evaluable, because they were retrospectively identified as not meeting inclusion criteria, did not start fluoropyrimidine-based treatment, or were homozygous or compound heterozygous DPYD variant allele carriers. Of 1103 evaluable patients, 85 (8%) were heterozygous DPYD variant allele carriers, and 1018 (92%) were DPYD wild-type patients. Overall, fluoropyrimidine-related severe toxicity was higher in DPYD variant carriers (33 [39%] of 85 patients) than in wild-type patients (231 [23%] of 1018 patients; p=0·0013). The RR for severe fluoropyrimidine-related toxicity was 1·31 (95% CI 0·63-2·73) for genotype-guided dosing compared with 2·87 (2·14-3·86) in the historical cohort for DPYD*2A carriers, no toxicity compared with 4·30 (2·10-8·80) in c.1679T>G carriers, 2·00 (1·19-3·34) compared with 3·11 (2·25-4·28) for c.2846A>T carriers, and 1·69 (1·18-2·42) compared with 1·72 (1·22-2·42) for c.1236G>A carriers. INTERPRETATION: Prospective DPYD genotyping was feasible in routine clinical practice, and DPYD genotype-based dose reductions improved patient safety of fluoropyrimidine treatment. For DPYD*2A and c.1679T>G carriers, a 50% initial dose reduction was adequate. For c.1236G>A and c.2846A>T carriers, a larger dose reduction of 50% (instead of 25%) requires investigation. Since fluoropyrimidines are among the most commonly used anticancer agents, these findings suggest that implementation of DPYD genotype-guided individualised dosing should be a new standard of care. FUNDING: Dutch Cancer Society

    DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer : a prospective safety analysis

    No full text
    BACKGROUND: Fluoropyrimidine treatment can result in severe toxicity in up to 30% of patients and is often the result of reduced activity of the key metabolic enzyme dihydropyrimidine dehydrogenase (DPD), mostly caused by genetic variants in the gene encoding DPD (DPYD). We assessed the effect of prospective screening for the four most relevant DPYD variants (DPYD*2A [rs3918290, c.1905+1G>A, IVS14+1G>A], c.2846A>T [rs67376798, D949V], c.1679T>G [rs55886062, DPYD*13, I560S], and c.1236G>A [rs56038477, E412E, in haplotype B3]) on patient safety and subsequent DPYD genotype-guided dose individualisation in daily clinical care. METHODS: In this prospective, multicentre, safety analysis in 17 hospitals in the Netherlands, the study population consisted of adult patients (≥18 years) with cancer who were intended to start on a fluoropyrimidine-based anticancer therapy (capecitabine or fluorouracil as single agent or in combination with other chemotherapeutic agents or radiotherapy). Patients with all tumour types for which fluoropyrimidine-based therapy was considered in their best interest were eligible. We did prospective genotyping for DPYD*2A, c.2846A>T, c.1679T>G, and c.1236G>A. Heterozygous DPYD variant allele carriers received an initial dose reduction of 25% (c.2846A>T and c.1236G>A) or 50% (DPYD*2A and c.1679T>G), and DPYD wild-type patients were treated according to the current standard of care. The primary endpoint of the study was the frequency of severe (National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03 grade ≥3) overall fluoropyrimidine-related toxicity across the entire treatment duration. We compared toxicity incidence between DPYD variant allele carriers and DPYD wild-type patients on an intention-to-treat basis, and relative risks (RRs) for severe toxicity were compared between the current study and a historical cohort of DPYD variant allele carriers treated with full dose fluoropyrimidine-based therapy (derived from a previously published meta-analysis). This trial is registered with ClinicalTrials.gov, number NCT02324452, and is complete. FINDINGS: Between April 30, 2015, and Dec 21, 2017, we enrolled 1181 patients. 78 patients were considered non-evaluable, because they were retrospectively identified as not meeting inclusion criteria, did not start fluoropyrimidine-based treatment, or were homozygous or compound heterozygous DPYD variant allele carriers. Of 1103 evaluable patients, 85 (8%) were heterozygous DPYD variant allele carriers, and 1018 (92%) were DPYD wild-type patients. Overall, fluoropyrimidine-related severe toxicity was higher in DPYD variant carriers (33 [39%] of 85 patients) than in wild-type patients (231 [23%] of 1018 patients; p=0·0013). The RR for severe fluoropyrimidine-related toxicity was 1·31 (95% CI 0·63-2·73) for genotype-guided dosing compared with 2·87 (2·14-3·86) in the historical cohort for DPYD*2A carriers, no toxicity compared with 4·30 (2·10-8·80) in c.1679T>G carriers, 2·00 (1·19-3·34) compared with 3·11 (2·25-4·28) for c.2846A>T carriers, and 1·69 (1·18-2·42) compared with 1·72 (1·22-2·42) for c.1236G>A carriers. INTERPRETATION: Prospective DPYD genotyping was feasible in routine clinical practice, and DPYD genotype-based dose reductions improved patient safety of fluoropyrimidine treatment. For DPYD*2A and c.1679T>G carriers, a 50% initial dose reduction was adequate. For c.1236G>A and c.2846A>T carriers, a larger dose reduction of 50% (instead of 25%) requires investigation. Since fluoropyrimidines are among the most commonly used anticancer agents, these findings suggest that implementation of DPYD genotype-guided individualised dosing should be a new standard of care. FUNDING: Dutch Cancer Society
    corecore