11 research outputs found

    Quality of Life (QoL) of Children and Adolescents Participating in a Precision Medicine Trial for High-Risk Childhood Cancer

    No full text
    Precision medicine is changing the treatment of childhood cancer globally, however little is known about quality of life (QoL) in children and adolescents participating in precision medicine trials. We examined QoL among patients enrolled in PRISM, the Zero Childhood Cancer Program’s precision medicine trial for high-risk childhood cancer. We assessed patient QoL via self-report (aged 12–17 years) and parent-proxy (aged 4–17 years) completion of the EQ-5D-Y. We analysed data using descriptive statistics and regression models. Patients (n = 23) and parents (n = 136) provided data after trial enrolment and following receipt of trial results and treatment recommendations (n = 8 patients, n = 84 parents). At enrolment, most patients were experiencing at least some difficulty across more than one QoL domain (81% patient self-report, 83% parent report). We did not find strong evidence of a change in QoL between timepoints, or of demographic or disease factors that predicted parent-reported patient QoL (EQ-VAS) at enrolment. There was strong evidence that receiving a treatment recommendation but not a change in cancer therapy was associated with poorer parent-reported patient QoL (EQ-VAS; Mdiff = −22.5, 95% CI: −36.5 to −8.5, p = 0.006). Future research needs to better understand the relationship between treatment decisions and QoL and would benefit from integrating assessment of QoL into routine clinical care

    Neuroblastoma in Older Children, Adolescents and Young Adults: A Report From the International Neuroblastoma Risk Group Project

    No full text
    BackgroundNeuroblastoma in older children and adolescents has a distinctive, indolent phenotype, but little is known about the clinical and biological characteristics that distinguish this rare subgroup. Our goal was to determine if an optimal age cut-off exists that defines indolent disease and if accepted prognostic factors and treatment approaches are applicable to older children. ProcedureUsing data from the International Neuroblastoma Risk Group, among patients 18 months old (n=4,027), monthly age cut-offs were tested to determine the effect of age on survival. The prognostic effect of baseline characteristics and autologous hematopoietic cell transplant (AHCT) for advanced disease was assessed within two age cohorts; 5 to <10 years (n=730) and 10 years (n=200). ResultsOlder age was prognostic of poor survival, with outcome gradually worsening with increasing age at diagnosis, without statistical evidence for an optimal age cut-off beyond 18 months. Among patients 5 years, factors significantly prognostic of lower event-free survival (EFS) and overall survival (OS) in multivariable analyses were INSS stage 4, MYCN amplification and unfavorable INPC histology classification. Among stage 4 patients, AHCT provided a significant EFS and OS benefit. Following relapse, patients in both older cohorts had prolonged OS compared to those 18 months to <5 years (P<0.0001). ConclusionsDespite indolent disease and infrequent MYCN amplification, older children with advanced disease have poor survival, without evidence for a specific age cut-off. Our data suggest that AHCT may provide a survival benefit in older children with advanced disease. Novel therapeutic approaches are required to more effectively treat these patients. Pediatr Blood Cancer 2014;61:627-635. (c) 2013 Wiley Periodicals, Inc

    Low-Dose Metronomic Topotecan and Pazopanib (TOPAZ) in Children with Relapsed or Refractory Solid Tumors: A C17 Canadian Phase I Clinical Trial

    No full text
    Oral metronomic topotecan represents a novel approach to chemotherapy delivery which, in preclinical models, may work synergistically with pazopanib in targeting angiogenesis. A phase I and pharmacokinetic (PK) study of this combination was performed in children with relapsed/refractory solid tumors. Oral topotecan and pazopanib were each administered daily without interruption in 28-day cycles at five dose levels (0.12 to 0.3 mg/m2 topotecan and 125 to 160 mg/m2 pazopanib powder for oral suspension (PfOS)), with dose escalation in accordance with the rolling-six design. PK studies were performed on day 1 and at steady state. Thirty patients were enrolled, with 26 evaluable for dose-limiting toxicity (DLT), with median age 12 years (3–20). Toxicities were generally mild; the most common grade 3/4 adverse events related to protocol therapy were neutropenia (18%), thrombocytopenia (11%), lymphopenia (11%), AST elevation (11%), and lipase elevation (11%). Only two cycle 1 DLTs were observed on study, both at the 0.3/160 mg/m2 dose level comprising persistent grade 3 thrombocytopenia and grade 3 ALT elevation. No AEs experienced beyond cycle 1 required treatment discontinuation. The best response was stable disease in 10/25 patients (40%) for a median duration of 6.4 (1.7–45.1) months. The combination of oral metronomic topotecan and pazopanib is safe and tolerable in pediatric patients with solid tumors, with a recommended phase 2 dose of 0.22 mg/m2 topotecan and 160 mg/m2 pazopanib. No objective responses were observed in this heavily pre-treated patient population, although 40% did achieve stable disease for a median of 6 months. While this combination is likely of limited benefit for relapsed disease, it may play a role in the maintenance setting

    Comparative RNA-Sequencing Analysis Benefits a Pediatric Patient With Relapsed Cancer

    No full text
    Clinical detection of sequence and structural variants in known cancer genes points to viable treatment options for a minority of children with cancer.1 To increase the number of children who benefit from genomic profiling, gene expression information must be considered alongside mutations.2,3 Although high expression has been used to nominate drug targets for pediatric cancers,4,5 its utility has not been evaluated in a systematic way.6 We describe a child with a rare sarcoma that was profiled with whole-genome and RNA sequencing (RNA-Seq) techniques. Although the tumor did not harbor DNA mutations targetable by available therapies, incorporation of gene expression information derived from RNA-Seq analysis led to a therapy that produced a significant clinical response. We use this case to describe a framework for inclusion of gene expression into the clinical genomic evaluation of pediatric tumors

    Performance of the eHealth decision support tool, MIPOGG, for recognising children with Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin syndromes.

    No full text
    BACKGROUND Cancer predisposition syndromes (CPSs) are responsible for at least 10% of cancer diagnoses in children and adolescents, most of which are not clinically recognised prior to cancer diagnosis. A variety of clinical screening guidelines are used in healthcare settings to help clinicians detect patients who have a higher likelihood of having a CPS. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) is an electronic health decision support tool that uses algorithms to help clinicians determine if a child/adolescent diagnosed with cancer should be referred to genetics for a CPS evaluation. METHODS This study assessed MIPOGG's performance in identifying Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin (nevoid basal cell carcinoma) syndromes in a retrospective series of 84 children diagnosed with cancer and one of these four CPSs in Canadian hospitals over an 18-year period. RESULTS MIPOGG detected 82 of 83 (98.8%) evaluable patients with any one of these four genetic conditions and demonstrated an appropriate rationale for suggesting CPS evaluation. When compared with syndrome-specific clinical screening criteria, MIPOGG's ability to correctly identify children with any of the four CPSs was equivalent to, or outperformed, existing clinical criteria respective to each CPS. CONCLUSION This study adds evidence that MIPOGG is an appropriate tool for CPS screening in clinical practice. MIPOGG's strength is that it starts with a specific cancer diagnosis and incorporates criteria relevant for associated CPSs, making MIPOGG a more universally accessible diagnostic adjunct that does not require in-depth knowledge of each CPS
    corecore