2 research outputs found

    Low frequency radio continuum imaging and SED modeling of 11 LIRGs: radio-only and FUV to radio bands

    Get PDF
    We present the detailed analysis of 11 local luminous infrared galaxies (LIRGs) from ultraviolet through far-infrared to radio (∼\sim70 MHz to ∼\sim15 GHz) bands. We derive the astrophysical properties through spectral energy distribution (SED) modeling using the Code Investigating GALaxy Emission (CIGALE) and UltraNest codes. The radio SEDs include our new observations at 325 and 610 MHz from the GMRT and the measurements from public archives. Our main results are (1) radio SEDs show turnovers and bends, (2) the synchrotron spectral index of the fitted radio spectra ranges between −-0.5 and −-1.7, and (3) the infrared luminosity, dust mass, dust temperature, stellar mass, star-formation rates (SFRs) and AGN fraction obtained from CIGALE falls in the range exhibited by galaxies of the same class. The ratio of 60μ\mum infrared and 1.4 GHz radio luminosity, the 1.4 GHz thermal fraction, and emission measure range between 2.1 and 2.9, 0.1% and 10%, 0.02 and 269.5×\times106^{6} cm−6^{-6} pc, respectively. We conclude that the turnovers seen in the radio SEDs are due to free-free absorption; this is supported by the low AGN fraction derived from the CIGALE analysis. The decomposed 1.4 GHz thermal and nonthermal radio luminosities allowed us to compute the star formation rate (SFR) using scaling relations. A positive correlation is observed between the SFRIR_{IR} obtained 10 Myr ago (compared to 100 Myr ago) and 1.4 GHz radio (total and nonthermal) because similar synchrotron lifetimes are expected for typical magnetic field strengths observed in these galaxies (≈\approx50μ\muG).Comment: ApJ accepted. Comments are welcom

    Low-frequency radio continuum imaging and SED modeling of 11 LIRGs : radio-only and FUV to radio bands

    Get PDF
    We present a detailed analysis of 11 local luminous infrared galaxies from ultraviolet through far-infrared to radio (∼70 MHz to ∼15 GHz) bands. We derive the astrophysical properties through spectral energy distribution (SED) modeling using the Code Investigating GALaxy Emission (CIGALE) and UltraNest codes. The radio SEDs include our new observations at 325 and 610 MHz from the GMRT and the measurements from public archives. Our main results are (1) radio SEDs show turnovers and bends, (2) the synchrotron spectral index of the fitted radio spectra ranges between −0.5 and −1.7, and (3) the infrared luminosity, dust mass, dust temperature, stellar mass, star formation rates (SFRs), and active galactic nuclei (AGN) fraction obtained from CIGALE fall within the range exhibited by galaxies of the same class. The ratio of 60 μm infrared and 1.4 GHz radio luminosity, the 1.4 GHz thermal fraction, and emission measure range between 2.1 and 2.9, 0.1% and 10%, 0.02 and 269.5 ×\times 106^{6} cm−6^{-6} pc, respectively. We conclude that the turnovers seen in the radio SEDs are due to free–free absorption; this is supported by the low AGN fraction derived from the CIGALE analysis. The decomposed 1.4 GHz thermal and nonthermal radio luminosities allowed us to compute the SFR using scaling relations. A positive correlation is observed between the SFRIR_{IR} obtained 10 Myr ago (compared to 100 Myr ago) and 1.4 GHz radio (total and nonthermal) because similar synchrotron lifetimes are expected for typical magnetic field strengths observed in these galaxies (≈50 μG)
    corecore