22 research outputs found

    MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triptolide is a diterpene triepoxide from the Chinese medicinal plant <it>Tripterygium wilfordii </it>Hook F., with known anti-inflammatory, immunosuppressive and anti-cancer properties.</p> <p>Results</p> <p>Here we report the expression profile of immune signaling genes modulated by triptolide in LPS induced mouse macrophages. In an array study triptolide treatment modulated expression of 22.5% of one hundred and ninety five immune signaling genes that included Toll-like receptors (TLRs). TLRs elicit immune responses through their coupling with intracellular adaptor molecules, MyD88 and TRIF. Although it is known that triptolide inhibits NFκB activation and other signaling pathways downstream of TLRs, involvement of TLR cascade in triptolide activity was not reported. In this study, we show that triptolide suppresses expression of proinflammatory downstream effectors induced specifically by different TLR agonists. Also, the suppressive effect of triptolide on TLR-induced NFκB activation was observed when either MyD88 or TRIF was knocked out, confirming that both MyD88 and TRIF mediated NFκB activation may be inhibited by triptolide. Within the TLR cascade triptolide downregulates TLR4 and TRIF proteins.</p> <p>Conclusions</p> <p>This study reveals involvement of TLR signaling in triptolide activity and further increases understanding of how triptolide activity may downregulate NFκB activation during inflammatory conditions.</p

    Phenethylisothiocyanate Alters Site- and Promoter-Specific Histone Tail Modifications in Cancer Cells

    Get PDF
    Site-specific histone modifications are important epigenetic regulators of gene expression. As deregulation of genes often results in complex disorders, corrective modulation of site-specific histone marks could be a powerful therapeutic or disease-preventive strategy. However, such modulation by dietary compounds and the resulting impact on disease risk remain relatively unexplored. Here we examined phenethylisothiocyanate (PEITC), a common dietary compound derived from cruciferous vegetables with known chemopreventive properties under experimental conditions, as a possible modulator of histone modifications in human colon cancer cells. The present study reports novel, dynamic, site-specific chemical changes to histone H3 in a gene-promoter-specific manner, associated with PEITC exposure in human colon tumor-derived SW480 epithelial cells. In addition, PEITC attenuated cell proliferation in a concentration- and timedependent manner, likely mediated by caspase-dependent apoptotic signalling. The effects of PEITC on histone modifications and gene expression changes were achieved at low, non-cytotoxic concentrations, in contrast to the higher concentrations necessary to halt cancer cell proliferation. Increased understanding of specific epigenetic alterations by dietary compounds may provide improved chemopreventive strategies for reducing the healthcare burden of cancer and other human diseases

    Resistant Starch Type 4-enriched Diet Lowered Blood Cholesterols and Improved Body Composition in a Double Blind Controlled Cross-over Intervention

    Get PDF
    A metabolic health crisis is evident as cardiovascular diseases (CVD) remain the leading cause of mortality in the United States. Effects of resistant starch type 4 (RS4), a prebiotic fiber, in comprehensive management of metabolic syndrome (MetS) remain unknown. This study examined the effects of a blinded exchange of RS4-enriched flour (30% v/v) with regular/control flour (CF) diet on multiple MetS comorbidities. In a double blind (participants-investigators), placebo-controlled, cluster cross-over intervention (n = 86, age≥18, 2-12 week interventions, 2-week washout) in the United States, individuals were classified as having MetS (With-MetS) or not (No-MetS) following International Diabetes Federation (IDF)-criteria. RS4 consumption compared with CF resulted in 7.2% (p = 0.002) lower mean total cholesterol, 5.5% (p = 0.04) lower non-HDL, and a 12.8% (p \u3c 0.001) lower HDL cholesterol in the With-MetS group. No-MetS individuals had a 2.6% (p = 0.02) smaller waist circumference and 1.5% (p = 0.03) lower percent body fat following RS4 intervention compared to CF. A small but significant 1% increase in fat-free mass was observed in all participants combined (p = 0.02). No significant effect of RS4 was observed for glycemic variables and blood pressures. RS4 consumption improved dyslipidemia and body composition. Incorporation of RS4 in routine diets could offer an effective strategy for public cardio-metabolic health promotion

    Impact of Dietary Resistant Starch Type 4 on Human Gut Microbiota and Immunometabolic Functions

    Get PDF
    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography-mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management

    Dietary phenethylisothiocyanate attenuates bowel inflammation in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenethylisothiocyanate (PEITC) is produced by Brassica food plants. PEO is a <b>P</b>EITC <b>E</b>ssential <b>O</b>il containing >95% natural PEITC. PEITC is known to produce various health benefits but its effect in alleviation of ulcerative colitis signs is unknown.</p> <p>Results</p> <p>In two efficacy studies (acute and chronic) oral administration of PEO was effective at remitting acute and chronic signs of ulcerative colitis (UC) in mice. Disease activity, histology and biochemical characteristics were measured in the treated animals and were compared with appropriate controls. PEO treatment significantly improved body weights and stool consistency as well as decreased intestinal bleeding. PEO treatment also reduced mucosal inflammation, depletion of goblet cells and infiltration of inflammatory cells. Attenuation of proinflammatory interleukin1β production was observed in the colons of PEO-treated animals. Expression analyses were also carried out for immune function related genes, transcription factors and cytokines in lipopolysaccharide-activated mouse macrophage cells. PEO likely affects an intricate network of immune signaling genes including a novel concentration dependent reduction of total cellular Signal Transducer and Activator of Transcription 1 (STAT1) as well as nuclear phosphorylated-STAT1 (activated form of STAT1). A PEO-concentration dependent decrease of mRNA of C-X-C motif ligand 10 (a STAT1 responsive chemokine) and Interleukin 6 were also observed.</p> <p>Conclusions</p> <p>PEO might be a promising candidate to develop as a treatment for ulcerative colitis patients. The disease attenuation by PEO is likely associated with suppression of activation of STAT1 transcription and inhibition of pro-inflammatory cytokines.</p

    Toward a Personalized Approach in Prebiotics Research

    No full text
    Recent characterization of the human microbiome and its influences on health have led to dramatic conceptual shifts in dietary bioactives research. Prebiotic foods that include many dietary fibers and resistant starches are perceived as beneficial for maintaining a healthy gut microbiota. This article brings forward some current perspectives in prebiotic research to discuss why reporting of individual variations in response to interventions will be important to discern suitability of prebiotics as a disease prevention tool

    Dietary Phenethyl Isothiocyanate Protects Mice from Colitis Associated Colon Cancer

    No full text
    We have previously reported alleviation of dextran sodium sulfate (DSS)-induced ulcerative colitis signs in phenethyl isothiocyanate (PEITC)-treated mice. Here we investigated chemoprotective activities of PEITC in mice with Azoxymethane-DSS induced colitis associated colon carcinogenesis. We also examined the molecular mediators associated with the PEITC effects using relevant cell lines. A 0.12% PEITC-enriched mouse-diet reduced mucosal and submucosal inflammation as well as glandular atypia by 12% and the frequency of adenocarcinoma by 17% with a concomitant improvement in overall disease activity indices compared to the diseased control group. Lipopolysaccharide-induced in vitro up-regulation of key mediators of inflammation, immune response, apoptosis, and cell proliferation were attenuated by 10 μM PEITC. Three of these mediators showed concentration-dependent reduction in respective mRNAs. Furthermore, PEITC inhibited Nuclear factor kappa B1 (NFκB1) proteins in a concentration-dependent manner. The NFκB1 mRNA expression inversely correlated (r = −0.940, p = 0.013) with tri-methylation of lysine 27 on histone 3 near its promoter region in a time-dependent manner. These results indicate that PEITC may slow down the development of colon carcinogenesis in an inflammatory intestinal setting which is potentially associated with epigenetic modulation of NFκB1 signaling

    A Diet for Healthy Weight: Why Reaching a Consensus Seems Difficult

    No full text
    Overweight and obesity are global health problems that contribute to the rising prevalence of non-communicable diseases, such as type 2 diabetes, heart disease, and certain cancers. The World Health Organization recognizes obesity as a primarily diet-induced, preventable condition, yet losing weight or keeping weight loss permanent is a universal challenge. In the U.S., formal dietary guidelines have existed since 1980. Over the same time-period, the incidence of obesity has skyrocketed. Here, we present our perspective on why current dietary guidelines are not always supported by a robust body of scientific data and emphasize the critical need for accelerated nutrition research funding. A clear understanding of the interaction of dietary patterns with system-level biological changes in a precise, response-specific manner can help inform evidence-based nutrition education, policy, and practice

    Promiscuity of hosting nitrogen fixation in rice: an overview from the legume perspective

    No full text
    The subject area of this review provides extraordinary challenges and opportunities. The challenges relate to the fact that the integration of various fields such as microbiology, biochemistry, plant physiology, eukaryotic as well as bacterial genetics, and applied plant sciences are required to assess the disposition of rice, an alien host, for establishing such a unique phenomenon as biological nitrogen fixation. The opportunities signify that, if successful, the breakthrough will have a significant impact on the global economy and will help improve the environment. This review highlights the literature related to the area of legume-rhizobia interactions, particularly those aspects whose understanding is of particular interest in the perspective of rice. This review also discusses the progress achieved so far in this area of rice research and the possibility of built-in nitrogen fixation in rice in the future. However, it is to be borne in mind that such research does not ensure any success at this point. It provides a unique opportunity to broaden our knowledge and understanding about many aspects of plant growth regulation in general
    corecore