10,078 research outputs found

    Stability of Compacton Solutions of Fifth-Order Nonlinear Dispersive Equations

    Full text link
    We consider fifth-order nonlinear dispersive K(m,n,p)K(m,n,p) type equations to study the effect of nonlinear dispersion. Using simple scaling arguments we show, how, instead of the conventional solitary waves like solitons, the interaction of the nonlinear dispersion with nonlinear convection generates compactons - the compact solitary waves free of exponential tails. This interaction also generates many other solitary wave structures like cuspons, peakons, tipons etc. which are otherwise unattainable with linear dispersion. Various self similar solutions of these higher order nonlinear dispersive equations are also obtained using similarity transformations. Further, it is shown that, like the third-order nonlinear K(m,n)K(m,n) equations, the fifth-order nonlinear dispersive equations also have the same four conserved quantities and further even any arbitrary odd order nonlinear dispersive K(m,n,p...)K(m,n,p...) type equations also have the same three (and most likely the four) conserved quantities. Finally, the stability of the compacton solutions for the fifth-order nonlinear dispersive equations are studied using linear stability analysis. From the results of the linear stability analysis it follows that, unlike solitons, all the allowed compacton solutions are stable, since the stability conditions are satisfied for arbitrary values of the nonlinear parameters.Comment: 20 pages, To Appear in J.Phys.A (2000), several modification

    Phase transition between non-extremal and extremal Reissner-Nordstr\"om black holes

    Full text link
    We discuss the phase transition between non-extremal and extremal Reissner-Nordstr\"om black holes. This transition is considered as the T0T \to 0 limit of the transition between the non-extremal and near-extremal black holes. We show that an evaporating process from non-extremal black hole to extremal one is possible to occur, but its reverse process is not possible to occur because of the presence of the maximum temperature. Furthermore, it is shown that the Hawking-Page phase transition between small and large black holes unlikely occurs in the AdS Reissner-Nordstr\"om black holes.Comment: 12 pages, 6 figures, version to appear in MPL

    Mean field baryon magnetic moments and sumrules

    Full text link
    New developments have spurred interest in magnetic moments (μ\mu-s) of baryons. The measurement of some of the decuplet μ\mu-s and the findings of new sumrules from various methods are partly responsible for this renewed interest. Our model, inspired by large colour approximation, is a relativistic self consistent mean field description with a modified Richardson potential and is used to describe the μ\mu-s and masses of all baryons with up (u), down (d) and strange (s) quarks. We have also checked the validity of the Franklin sumrule (referred to as CGSR in the literature) and sumrules of Luty, March-Russell and White. We found that our result for sumrules matches better with experiment than the non-relativistic quark model prediction. We have also seen that quark magnetic moments depend on the baryon in which they belong while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl

    Nonmodal energy growth and optimal perturbations in compressible plane Couette flow

    Full text link
    Nonmodal transient growth studies and estimation of optimal perturbations have been made for the compressible plane Couette flow with three-dimensional disturbances. The maximum amplification of perturbation energy over time, GmaxG_{\max}, is found to increase with increasing Reynolds number Re{\it Re}, but decreases with increasing Mach number MM. More specifically, the optimal energy amplification GoptG_{\rm opt} (the supremum of GmaxG_{\max} over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as MM increases. The corresponding optimal streamwise wavenumber, αopt\alpha_{\rm opt}, is non-zero at M=0, increases with increasing MM, reaching a maximum for some value of MM and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers, the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2, the reasons for which are shown to be tied to the dominance of some terms in the linear stability operator. Based on a detailed nonmodal energy analysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid {\it algebraic} instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E˙1\dot{\mathcal E}_1) in the same limit

    A comparison of ultraviolet sensitivities in universal, nonuniversal, and split extra dimensional models

    Full text link
    We discuss the origin of ultraviolet sensitivity in extra dimensional theories, and compare and contrast the cutoff dependences in universal, nonuniversal and split five dimensional models. While the gauge bosons and scalars are in the five dimensional bulk in all scenarios, the locations of the fermions are different in different cases. In the universal model all fermions can travel in the bulk, in the nonuniversal case they are all confined at the brane, while in the split scenario some are in the bulk and some are in the brane. A possible cure from such divergences is also discussed.Comment: 9 pages, Latex, no figure, v2: further clarifications and references added, accepted for publication in Phys. Rev.

    Intrinsic noise induced resonance in presence of sub-threshold signal in Brusselator

    Full text link
    In a system of non-linear chemical reactions called the Brusselator, we show that {\it intrinsic noise} can be regulated to drive it to exhibit resonance in the presence of a sub-threshold signal. The phenomena of periodic stochastic resonance and aperiodic stochastic resonance, hitherto studied mostly with extrinsic noise, is demonstrated here to occur with inherent systemic noise using exact stochastic simulation algorithm due to Gillespie. The role of intrinsic noise in a couple of other phenomena is also discussed.Comment: 7 pages, 5 figure

    Spin liquid behaviour in Jeff=1/2 triangular lattice Ba3IrTi2O9

    Full text link
    Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as evidenced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.Comment: 10 pages including supplemental material, to be published in Phys. Rev. B (Rapid Comm.

    A STUDY OF POWER LINE INTERFERENCE CANCELLATION USING IIR, AAPTIVE AND WAVELET FILTERING IN ECG

    Get PDF
    Background: It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. The present paper deals with the digital filtering method to reduce 50 Hz power line noise artifacts in the ECG signal. 4th order Butterworth notch filters(BW=.5 Hz) is used to reduce 50 Hz power line noise interference(PLI) from ECG signals and its performance is compared with Adaptve filters. Method: ECG signal is taken from physionet database. ECG signal (with PLI noise of different frequencies) were processed by Butterworth notch filters of bandwidths of 0.5 Hz. Ringing Artifact is observed in the output. ECG signal (with PLI noise of different frequencies) were processed by Adaptive filters no ringing effect seen. Wavelet filtering applied clean ECG were observed. Result: Performance is compared based on SNR and MSE of Butterworth notch filter and adaptive filters and output of wallet filtering were observed. Conclusion: RLS adaptive filter give better performance as compared to IIR Butterworth and LMS. Clean ECG were seen when filtering using symlet8 wavelet was done
    corecore