3 research outputs found

    An analytical study and visualisation of human activity and content-based recommendation system by applying ml automation

    Get PDF

    Graphical Gaussian Process Models for Highly Multivariate Spatial Data

    Full text link
    For multivariate spatial Gaussian process (GP) models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence among the variables. This is undesirable, especially for highly multivariate settings, where popular cross-covariance functions such as the multivariate Mat\'ern suffer from a "curse of dimensionality" as the number of parameters and floating point operations scale up in quadratic and cubic order, respectively, in the number of variables. We propose a class of multivariate "Graphical Gaussian Processes" using a general construction called "stitching" that crafts cross-covariance functions from graphs and ensures process-level conditional independence among variables. For the Mat\'ern family of functions, stitching yields a multivariate GP whose univariate components are Mat\'ern GPs, and conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Mat\'ern GP to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling

    Graph-constrained Analysis for Multivariate Functional Data

    Full text link
    Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model representing the conditional relationships between the functional variables. However, in many applications of multivariate functional data, the graph is known and existing functional GGM methods cannot preserve a given graphical constraint. In this manuscript, we demonstrate how to conduct multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed originally for constructing optimal covariance functions for multivariate spatial data that retain the conditional independence relations in a given graphical model. The theoretical connection help design a new algorithm that leverages Dempster's covariance selection to calculate the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while still respecting the graph and retaining computational scalability. The insights obtained from the new results presented in this manuscript will help practitioners better understand the relationship between these graphical models and in deciding on the appropriate method for their specific multivariate data analysis task. The benefits of the proposed algorithms are illustrated using empirical experiments and an application to functional modeling of neuroimaging data using the connectivity graph among regions of the brain.Comment: 23 pages, 6 figure
    corecore