16 research outputs found

    The geochemical and pore characteristics of a typical marine–continental​ transitional gas shale: A case study of the Permian Shanxi Formation on the eastern margin of the Ordos Basin

    No full text
    The marine–continental transitional Permian Shanxi Formation, which is located on the eastern margin of the Ordos Basin, is expected to be another set of economic gas shale for exploration and development in China. In this study, geochemical methods, low-pressure gas adsorption, high-pressure mercury intrusion, and field emission scanning electron microscopy (FE-SEM) imaging were performed to investigate the pore structure characteristics of the second member of the Permian Shanxi gas shale. The results show that the average TOC content of the shale is 5.90%, the average thermal maturity is 2.22% Ro, and these organic-rich shales are enriched in clay minerals. Mesopores are the predominant pore type in these shales, and have slit-like shapes. FE-SEM analysis reveals that the interparticle pores associated with clay minerals are more developed than organic-hosted pores, while a few SEM-invisible micropores may be related to the aromatic structures of kerogen in the shale. Pore development in the studied samples is influenced by the TOC and clay mineral contents. The development of organic-hosted pores in the shale shows obvious differences when compared to representative marine gas shales worldwide, which are ascribed to the differences in kerogen types. Nevertheless, the development of micropores and mesopores in the samples is comparable to that of marine shales, which indicates the presence of qualified space for gas storage in the studied shale. This study will provide crucial theoretical guidance for determining of sweet spots and for the further exploration and development of the transitional shale gas

    Breakthrough and prospect of shale gas exploration and development in China

    Get PDF
    In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas exploration and development in China is, on the whole, still at its early stage. Especially, marine shale gas in the Sichuan Basin has dominated the recent exploration and development. For the realization of shale gas scale development in China, one key point lies in the breakthrough and industrial production of transitional facies and continental facies shale gas. Low–moderate yield of shale gas wells is the normal in China, so it is crucial to develop key exploration and development technologies. Especially, strictly controlling single well investment and significantly reducing cost are the important means to increase shale gas exploration and development benefits. And finally, suggestions were proposed in five aspects. First, continuously strengthen theoretical and technical researches, actively carry out appraisal on shale gas “sweet spots”, and gradually accumulate development basis. Second, stress on primary evaluation of exploration and development, highlight the effective implementation of shale gas resources, and control the rhythm of appraisal drilling and productivity construction. Third, highlight fine description and evaluation of shale gas reservoirs and increase the overall development level. Fourth, intensify the research on exploration and development technologies in order to stand out simple and practical technologies with low costs. And fifth, summarize the experiences in fast growth of shale gas exploration and development, highlight the demonstration and evaluation of key indicators, and try to achieve more breakthroughs and replacement in new areas, new domains and new strata

    Shale gas in China: Characteristics, challenges and prospects (II)

    No full text
    This paper mainly discusses the industrialization progress, “sweet spot” evaluation criterion, E&P technologies, success experiences, challenges and prospects of China's shale gas. Based on the geologic and engineering parameters of the Fuling, Changning and Weiyuan shale gas fields in the Sichuan Basin, this paper points out that China's shale gas has its particularity. The discoveries of super-giant marine shale gas fields with high evolution degree (Ro=2.0%−3.5%) and ultrahigh pressure (pressure coefficient=1.3−2.1) in southern China is of important scientific significance and practical value to ancient marine shale gas exploration and development to China and even the world. It's proposed that shale gas “sweet spots” must be characterized by high gas content, excellent frackability and good economy etc. The key indicators to determine the shale gas enrichment interval and trajectory of horizontal wells include “four highs”, that is high TOC (>3.0%), high porosity (>3.0%), high gas content (>3.0 m3/t) and high formation pressure (pressure coefficient>1.3), and “two well-developed” (well-developed beddings and well-developed micro-fractures). It's suggested that horizontal well laneway be designed in the middle of high pressure compartment between the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation. The mode of forming “artificial shale gas reservoir” by “fracturing micro-reservoir group” is proposed and the mechanisms of “closing-in after fracturing, limiting production through pressure control” are revealed. Several key technologies (such as three-dimensional seismic survey and micro-seismic monitoring of fracturing, horizontal wells, “factory-like” or industrialized production mode, etc.) were formed. Some successful experiences (such as “sweet spot” selection, horizontal well laneway control, horizontal length optimization and “factory-like” production mode, etc.) were obtained. The four main challenges to realize large-scale production of shale gas in China include uncertainty of shale gas resources, breakthroughs in key technologies and equipment of shale gas exploration and development below 3 500 m, lower cost of production, as well as water resources and environment protection. It is predicted that the recoverable resources of the Lower Paleozoic marine shale gas in southern China are approximately 8.8×1012 m3, among which the recoverable resources in the Sichuan Basin are 4.5×1012 m3 in the favorable area of 4.0×104 km2. The productivity of (200−300)×108 m3/a is predicted to be realized by 2020 when the integrated revolution of “theory, technology, production and cost” is realized in Chinese shale gas exploration and development. It is expected in the future to be built “Southwest Daqing Oilfield (Gas Daqing)” in Sichuan Basin with conventional and unconventional natural gas production. Key words: shale gas field, economic sweet spot, micro gas reservoir, horizontal well, factory-like production, volume fracturing, development cost, resource potential, favorable targe

    Shale gas in China: Characteristics, challenges and prospects (I)

    No full text
    The main factors controlling the enrichment and high yield of shale gas were analyzed based on the recent research progress of depositional model and reservoir characterization of organic-rich shale in China. The study determines the space-time comparison basis of graptolite sequence in the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation and proposes the important depositional pattern of marine organic-rich shale: stable ocean basin with low subsidence rate, high sea level, semi-enclosed water body, and low sedimentation rate. Deposited in the stage of Late Ordovician-Early Silurian, the superior shale with thickness of 20−80 m and total organic carbon (TOC) content of 2.0%−8.4% was developed in large deep-water shelf environment which is favorable for black shale development. Based on the comparison among the Jiaoshiba, Changning and Weiyuan shale gas fields, it is believed that reservoirs of scale are mainly controlled by shale rich in biogenic silica and calcium, moderate thermal maturity, high matrix porosity, and abundant fracture. The shales in the Wufeng and Longmaxi formations are characterized by porosity of 3.0%−8.4%, permeability of 0.000 2×10−3−0.500 0×10−3 ÎŒm2, stable areal distribution of matrix pore volume and their constituents, great variation in fracture and pore characteristics among different tectonic regions as well as different well fields and different intervals in the same tectonic. The Cambrian Qiongzhusi shale features poor physical properties with the porosity of 1.5%−2.9% and the permeability of 0.001×10−3−0.010×10−3 ÎŒm2, resulted from the carbonization of organic matter, high crystallinity of clay minerals and later filling in bioclastic intragranular pores. Four factors controlling the accumulation and high production of shale gas were confirmed: depositional environment, thermal evolution, pore and fracture development, and tectonic preservation condition; two special features were found: high thermal maturity (Ro of 2.0%−3.5%) and overpressure of reservoir (pressure coefficient of 1.3−2.1); and two enrichment modes were summarized: “structural sweet spots” and “continuous sweet area”. Key words: shale gas, organic-rich shale, sedimentary model, reservoir characterization, sweet spot area, Jiaoshiba shale gas field, Changning shale gas field, Weiyuan shale gas fiel

    Community Integrated Earth System Model (CIESM): Description and Evaluation

    No full text
    Abstract A team effort to develop a Community Integrated Earth System Model (CIESM) was initiated in China in 2012. The model was based on NCAR Community Earth System Model (Version 1.2.1) with several novel developments and modifications aimed to overcome some persistent systematic biases, such as the double Intertropical Convergence Zone problem and underestimated marine boundary layer clouds. Aerosols' direct and indirect effects are prescribed using the MACv2‐SP approach and data sets. The spin‐up of a 500‐year preindustrial simulation and three historical simulations are described and evaluated. Prominent improvements include alleviated double Intertropical Convergence Zone problem, increased marine boundary layer clouds, and better El Niño Southern Oscillation amplitude and periods. One deficiency of the model is the significantly underestimated Arctic and Antarctic sea ice in warm seasons. The historical warming is about 0.55 °C greater than observations toward 2014. CIESM has an equilibrium climate sensitivity of 5.67 K, mainly resulted from increased positive shortwave cloud feedback. Our efforts on porting and redesigning CIESM for the heterogeneous Sunway TaihuLight supercomputer are also introduced, including some ongoing developments toward a future version of the model
    corecore