27 research outputs found
Loop Quantum Cosmology
Quantum gravity is expected to be necessary in order to understand situations
where classical general relativity breaks down. In particular in cosmology one
has to deal with initial singularities, i.e. the fact that the backward
evolution of a classical space-time inevitably comes to an end after a finite
amount of proper time. This presents a breakdown of the classical picture and
requires an extended theory for a meaningful description. Since small length
scales and high curvatures are involved, quantum effects must play a role. Not
only the singularity itself but also the surrounding space-time is then
modified. One particular realization is loop quantum cosmology, an application
of loop quantum gravity to homogeneous systems, which removes classical
singularities. Its implications can be studied at different levels. Main
effects are introduced into effective classical equations which allow to avoid
interpretational problems of quantum theory. They give rise to new kinds of
early universe phenomenology with applications to inflation and cyclic models.
To resolve classical singularities and to understand the structure of geometry
around them, the quantum description is necessary. Classical evolution is then
replaced by a difference equation for a wave function which allows to extend
space-time beyond classical singularities. One main question is how these
homogeneous scenarios are related to full loop quantum gravity, which can be
dealt with at the level of distributional symmetric states. Finally, the new
structure of space-time arising in loop quantum gravity and its application to
cosmology sheds new light on more general issues such as time.Comment: 104 pages, 10 figures; online version, containing 6 movies, available
at http://relativity.livingreviews.org/Articles/lrr-2005-11