23 research outputs found

    Surf zone hyperbenthos of Belgian sandy beaches: seasonal patterns

    Get PDF
    Since surf zone hyperbenthos, although highly important in local food webs, has often been neglected and very little information is available, a survey of the Belgian sandy beaches was carried out from May 1996 until July 1997. Monthly samples were taken to give a complete record of hyperbenthic organisms occurring in the surf zone of Belgian sandy beaches and to evaluate the intensity by which this surf zone is used. In total 172 species were recorded. The number of species occurring in the surf zone is comparable to that of adjacent areas. As weIl as true hyperbenthic species, endobenthic and planktonic organisms were sampled. More than 75% of the average total sample composition consisted of mysids, mainly Mesopodopsis slabberi, Schistomysis spiritus and Schistomysis kervillei (holohyperbenthos). Apart from several resident species, active and passive seasonal migration towards the surf zone by a number of species is suggested. A large number of sporadic species adds to the composition of surf zone hyperbenthos. Within the merohyperbenthos, postlarval decapods and fish were the dominant organisms. During the year three recruitment peaks were observed. Average densities per month exceeded 1500 ind. 100 m-2. Yearly biomass averages ranged from 300 to over 3000 mg ADW 100 m-2. Densities of the common species are slightly higher in the surf zone than in other habitats, emphasising the importance of the area. Besides a possible nursery function, the surf zone may also be used as a transient area between different habitats. Finally, the influence of several abiotic factors on the hyperbenthic assemblages was evaluated. The main structuring variables determining the occurrence of most of the organisms are water temperature and hydrodynamic factors such as wave height and turbidity. The influence of wave height seems to be two-fold: several good swimmers such as mysids and some fish species are suggested to be able to actively avoid severe wave conditions, whereas other, more planktonic organisms, are passively transported towards the area if wave height increases

    Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the Georges Bank northern margin and their ecological implications

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain. The definitive version was published in PLoS ONE 8 (2013): e55273, doi:10.1371/journal.pone.0055273.Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ~100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.This study was supported by salary funds from the regular annual salary budget from Northeast Fisheries Science Center (NEFSC) and United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH C&MSC), respectively; ship time funds from the NEFSC annual budget for days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC annual equipment budgets

    Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

    Get PDF
    δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization
    corecore