2,792 research outputs found
Engaging Students Engaging Industry Engaging Enterprise
A reflective piece on how a small team of students and academics gained more awareness of their own sense of enterprise and creativity. The case study examines the phases and crisis points of the whole event process and identifies some of the key learning outcomes for all involved
Non-equilibrium structural phase transitions of the vortex lattice in MgB2
We have studied non-equilibrium phase transitions in the vortex lattice in
superconducting MgB2, where metastable states are observed in connection with
an intrinsically continuous rotation transition. Using small-angle neutron
scattering and a stop-motion technique, we investigated the manner in which the
metastable vortex lattice returns to the equilibrium state under the influence
of an ac magnetic field. This shows a qualitative difference between the
supercooled case which undergoes a discontinuous transition, and the
superheated case where the transition to the equilibrium state is continuous.
In both cases the transition may be described by an an activated process, with
an activation barrier that increases as the metastable state is suppressed, as
previously reported for the supercooled vortex lattice [E. R. Louden et al.,
Phys. Rev. B 99, 060502(R) (2019)]. Separate preparations of superheated
metastable vortex lattices with different domain populations showed an
identical transition towards the equilibrium state. This provides further
evidence that the vortex lattice metastability, and the kinetics associated
with the transition to the equilibrium state, is governed by nucleation and
growth of domains and the associated domain boundaries.Comment: 27 pages, 10 figures. arXiv admin note: text overlap with
arXiv:1812.0597
The Absence of Vortex Lattice Melting in a Conventional Superconductor
The state of the vortex lattice extremely close to the superconducting to
normal transition in an applied magnetic field is investigated in high purity
niobium. We observe that thermal fluctuations of the order parameter broaden
the superconducting to normal transition into a crossover but no sign of a
first order vortex lattice melting transition is detected in measurements of
the heat capacity or the small angle neutron scattering (SANS) intensity.
Direct observation of the vortices via SANS always finds a well ordered vortex
lattice. The fluctuation broadening is considered in terms of the Lowest Landau
Level theory of critical fluctuations and scaling is found to occur over a
large H_{c2}(T) range
Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice
Using small-angle neutron scattering, we investigated the behavior of a
metastable vortex lattice state in MgB2 as it is driven towards equilibrium by
an AC magnetic field. This shows an activated behavior, where the AC field
amplitude and cycle count are equivalent to, respectively, an effective
"temperature" and "time". The activation barrier increases as the metastable
state is suppressed, corresponding to an aging of the vortex lattice.
Furthermore, we find a cross-over from a partial to a complete suppression of
metastable domains depending on the AC field amplitude, which may empirically
be described by a single free parameter. This represents a novel kind of
collective vortex behavior, most likely governed by the nucleation and growth
of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia
First-Order Reorientation of the Flux-Line Lattice in CaAlSi
The flux line lattice in CaAlSi has been studied by small angle neutron
scattering. A well defined hexagonal flux line lattice is seen just above Hc1
in an applied field of only 54 Oe. A 30 degree reorientation of this vortex
lattice has been observed in a very low field of 200 Oe. This reorientation
transition appears to be of first-order and could be explained by non-local
effects. The magnetic field dependence of the form factor is well described by
a single penetration depth of 1496(1) angstroms and a single coherence length
of 307(1) angstroms at 2 K. At 1.5 K the penetration depth anisotropy is 2.7(1)
with the field applied perpendicular to the c axis and agrees with the
coherence length anisotropy determined from critical field measurements.Comment: 5 pages including 6 figures, to appear in Physical Review Letter
- …