501 research outputs found

    CONFLICTING JURISDICTION IN ADMIRALTY OVER FOREIGN VESSELS

    Get PDF

    THE LAWS OF SALVAGE

    Get PDF

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Cross-Newell equations for hexagons and triangles

    Get PDF
    The Cross-Newell equations for hexagons and triangles are derived for general real gradient systems, and are found to be in flux-divergence form. Specific examples of complex governing equations that give rise to hexagons and triangles and which have Lyapunov functionals are also considered, and explicit forms of the Cross-Newell equations are found in these cases. The general nongradient case is also discussed; in contrast with the gradient case, the equations are not flux-divergent. In all cases, the phase stability boundaries and modes of instability for general distorted hexagons and triangles can be recovered from the Cross-Newell equations.Comment: 24 pages, 1 figur

    Amplitude equations near pattern forming instabilities for strongly driven ferromagnets

    Full text link
    A transversally driven isotropic ferromagnet being under the influence of a static external and an uniaxial internal anisotropy field is studied. We consider the dissipative Landau-Lifshitz equation as the fundamental equation of motion and treat it in 1+11+1~dimensions. The stability of the spatially homogeneous magnetizations against inhomogeneous perturbations is analyzed. Subsequently the dynamics above threshold is described via amplitude equations and the dependence of their coefficients on the physical parameters of the system is determined explicitly. We find soft- and hard-mode instabilities, transitions between sub- and supercritical behaviour, various bifurcations of higher codimension, and present a series of explicit bifurcation diagrams. The analysis of the codimension-2 point where the soft- and hard-mode instabilities coincide leads to a system of two coupled Ginzburg-Landau equations.Comment: LATeX, 25 pages, submitted to Z.Phys.B figures available via [email protected] in /pub/publications/frank/zpb_95 (postscript, plain or gziped
    • …
    corecore