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The paper considers a one-dimensional Brusselator model with a uniform flow of the mixture of
reaction components. An absolute as well as a convective instability can arise for both the Hopf and
the Turing modes. The corresponding linear stability analysis is presented and supported by the
results of computer simulations of the nonlinear equations. Finally, the condition for spatially
undamped tails~the Cherenkov condition! is obtained. This represents a new mechanism for pattern
formation in chemical reaction-diffusion systems. ©1997 American Institute of Physics.
@S0021-9606~97!01818-7#

I. INTRODUCTION

Chemical reaction-diffusion systems can display insta-
bilities of Hopf as well as of Turing type.1–3 The Hopf in-
stability is associated with the onset of spatially uniform os-
cillations in time as a pair of complex conjugated
eigenvalues of the Jacobian for the kinetic equations cross
the imaginary axis. The Turing instability,4–6 on the other
hand, arises as a single real eigenvalue crosses the imaginary
axis, and the homogeneous steady state yields to the growth
of spatial patterns of finite wavelength. In one dimension,
this pattern has the form of a stripe structure. The condition
for the Turing instability to arise before the Hopf instability
is usually that the diffusion constants of the basic reagents
are very different so that we can have short range activation
and long range inhibition.

By contrast, for instance, to hydrodynamical instabili-
ties, the Turing instability is characterized by an endoge-
neously controlled wavelength, determined by the rates of
reaction and diffusion of the involved chemical species. A
related phenomenon is the formation of Liesegang rings,7,8

where the chemical reaction-diffusion processes are coupled
with physical precipitation. Recently, yet another instability
has been studied9 that arises due to different flow velocities
for the activator and inhibitor species.

Over the years a variety of different reaction-diffusion
models have been investigated, including the Brusselator and
Schnackenberg models, the Lengyel-Epstein model, and the
Gray-Scott model. These studies have been directed, among
other things, towards elucidating the formation of localized
structures,10 the emergence of secondary instabilities such as
the Eckhaus and zig–zag instabilities,11 the competition of
different modes in ramped systems,12 and the so-called spot-
multiplication in systems exhibiting bistability.13 In all cases,
the reaction-diffusion processes have been considered to take
place in a resting medium.

The purpose of the present paper is to investigate a

model of a reaction-diffusion system with uniform flow. As
illustrated in Fig. 1, the reagents are assumed to be pumped
continuously into the lengthy reaction space from the left.
The mixture of species moves with a constant speed along
thex-axis and leaves the reactor to the right. A setup of this
type is clearly of relevance for many industrial processes,
and it may also provide relatively simple conditions for the
experimental investigation of chemical instabilities. We shall
demonstrate that the pattern formation and spatio-temporal
dynamics in the flow system depend crucially on the flow
rate and that they can arise either in the form of convective
or in the form of absolute instabilities.

An instability in a spatially extended system with trans-
lation invariance is termed absolute if a localized initial per-
turbation gives rise to growing amplitudes at all fixed points
in space. This is illustrated in Fig. 2~a!. The instability is
called convective if the growing perturbation drifts in such a
way that observation at a fixed point asymptotically shows
an amplitude that decays towards zero@Fig. 2~b!#. The for-
mal analysis of absolute and convective instabilities has been
developed and widely applied in hydrodynamics, plasma
physics, electronics and other fields.14–18 To the best of our
knowledge, however, only a few studies have hinted at this
approach in connection with reaction-diffusion systems.19–21

One of our aims is therefore to draw more attention to these
useful concepts. We complete the analysis by discussing the
Cerenkov condition for the emergence of spatially growing
tails. This provides a new mechanism for pattern formation
in chemical reaction-diffusion systems that can operate even
with equal diffusion constants.

II. LINEAR STABILITY ANALYSIS FOR THE SYSTEM
WITH FLOW

Let us consider the well-known Brusselator model as an
example of a reaction-diffusion system that can produce Tur-
ing and Hopf instabilities.1,22 With proper choice of space
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and time units, and including the convective terms, this
model is represented by the following kinetic equations:

Ut1cUx5A2BU2U1U2V1sUxx ~1!

and

Vt1cVx5BU2U2V1Vxx ~2!

with U andV denoting the concentrations of the interacting
chemical species.A andB are externally controlled feed con-
centrations.c is the flow rate, ands is the ratio of the two
diffusion constants.

These equations obviously allow for the homogeneous
steady state solutionU5A andV5B/A. Let us denote the
input concentrations for the two reagents byU0 andV0 . The
left-hand side boundary conditions then become

Uux505U0 and Vux505V0 . ~3!

In most of the following analyses we shall assume the
input concentrations to be equal to the steady state values
A andB/A.

Let us start with a spatially unbounded system and ask
the question: How will the dynamics depend on the param-
etersA, B, s, andc for a localized small initial perturbation
of the homogeneous steady state? We substitute

U5A1u~x,t ! and V5B/A1v~x,t ! ~4!

into the kinetic equations and assumeuuu,uvu ! 1. Then, in
the linear approximation, we have

ut1cux5~B21!u1A2v1suxx , ~5!

v t1cvx52Bu2A2v1vxx . ~6!

We suppose that the initial conditions are

uu t505 f ~x! and vu t505g~x!, ~7!

where the functionsf (x) and g(x) decay rapidly for
x→ 6 `. Following the standard approach, let us now per-
form a Laplace transformation of the linearized equations
over the two independent variablesx andt. Forx we use the
so-called two-sided version of the transformation. The rela-
tions for the forward and backward transforms are

Usq5E
0

`

e2stdtE
2`

`

u~x,t !e2qxdx ~8!

and

u~x,t !52
1

4p2 E
b2 i`

b1 i`

estdsE
2 i`

i`

Usqe
qxdq, ~9!

wheres andq are complex variables. In formula~9! for the
backward transformation, the integration contour in the
q-plane is the imaginary axis. In thes-plane the contour is
parallel to the imaginary axis and located to the right of all
singularities of the integrand.

After this transformation, the kinetic equations read

~s1cq2B112sq2!Usq2A2Vsq5F~q! ~10!

and

BUsq1~s1cq1A22q2!Vsq5G~q!, ~11!

where F(q) and G(q) are the transforms off (x) and
g(x). To reveal the presence of an instability and disclose its
character, it is sufficient to consider one variable, sayU. By
solving the linear equations~10! and ~11! we findUsq and
then use the backward transformation~9! to obtain the fol-
lowing formal solution:

u~x,t !52
1

4p2 E
b2 i`

b1 i`

estds

3E
2 i`

1 i` ~s1cq1A22q2!F~q!1A2G~q!

D~s,q!
eqxdq,

~12!

where the denominator

D~s,q!5~s1cq2B112sq2!~s1cq1A22q2!1A2B.

Under integration~12!, q runs along the imaginary axis.
Hence, the solutionu(x,t) will contain components that
grow with time if there exist purely imaginary values ofq for
which the dispersion equation

~s1cq2B112sq2!~s1cq1A22q2!1A2B50 ~13!

has a roots with positive real part. This is just the condition
for instability. From the quadratic equation~13! we find the
roots

s1,252cq2 1
2 $12B1A22sq22q2

6@~12B2A22sq21q2!224A2B#1/2%. ~14!

FIG. 1. Sketch of the reaction-diffusion flow model. The reagentsA ~in
excess!, B ~in excess!, U, and V are pumped from the left edge. Their
mixture moves with constant speed along thex-axis and leaves the reactor at
the right edge.

FIG. 2. Evolution of a localized perturbation in one-dimensional extended
system in the cases of absolute~a! and convective~b! instabilities.
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Substitutingq5 ik, we see that the onset of the instability
does not depend on the flow rate~the parameterc does not
influence the real part of the roots!.

It follows from Eq. ~14! that the instability occurs in the
range of wave numbers neark50 for

B.BH511A2, ~15!

and neark56A1/2s21/4 for

B.BT5~11As1/2!2. ~16!

These expressions coincide with the well-known instability
conditions for the Brusselator model without flow.22 The first
type of instability is associated with a Hopf bifurcation in the
spatially uniform system. This instability appears at the
threshold as oscillations with frequencyV5Im s5A and
wave numberk50. The second type is the Turing instability.
For c50 ~no flow! it arises at zero frequency. ForcÞ0 the
frequency at the threshold of the instability differs from zero,
V5Im s5ck. This may be considered as a Doppler fre-
quency shift; the Turing pattern with wave numberk moves
in the laboratory frame with velocityc, producing the fre-
quencyV5ck.

Now we have to determine whether the Hopf and Turing
instabilities are absolute or convective. For this aim we must
estimate carefully the integral~12! and study the asymptotic
behavior of the solutionu(x,t) for t→` andx5const.

Following Briggs16 and Bers,17 we may try to evaluate
the outer integral by shifting the contour in thes-plane to the
left, as far as possible without crossing any singularity of the
integrand. If the system is stable, we can shift the contour in
this way and place it entirely in the left half-plane. In this
case the estimate for the solution yieldsuu(x,t)u,const
•e2bt, where the rate constantb is the numerical value of the
real part of that singularity which is closest to the imaginary
axis in thes-plane.

If an instability occurs, a similar trick may be successful
as long as the function under the outer integral allows ana-
lytic continuation in thes-plane~to the imaginary axis and
beyond!. The procedure of the analytic continuation corre-
sponds to a deformation of theq-contour~the contour for the
inner integral! that preserves the original bypass rules for the
poles@zeros of the denominatorD(s,q)#. If we can place the
s-contour in the left half-plane while satisfying the above
conditions, at any fixed position the perturbationu(x,t) de-
cays exponentially with time. Thus, the supposed instability
can be only convective. Figure 3~a! shows the typical con-
figuration of the integration contours in theq and s-planes
for this case. The dotted lines in the left diagram are trajec-
tories of the poles in theq-plane traced whiles runs along
the integration contour in thes-plane.

When trying to shift thes-contour to the left it may
occur, however, that we find theq-contour pinched between
two poles that arrive from opposite sides and merge@Fig.
3~b!#. This implies the presence of a branch point of the
function q(s). In other words, the dispersion equation has
here a double root~with respect toq!. The algebraic condi-
tions for this situation to arise are

D~s,q!50 and s8~q!50. ~17!

If the root of Eq.~17! s5sb5s(qb) is located in the right
half-plane, the instability is absolute.16,17 In this case the part
of the s-contour running along the edges of the branch cut
and around the branch point@Fig. 3~b!, right# gives an in-
creasing contribution to the integral

u~x,t !>t21/2 exp~sbt1qbx!. ~18!

@We recall that not all the branch points that may be obtained
from Eq. ~17! give rise to an absolute instability. Only those
are relevant that appear due to merging of roots of the dis-
persion equation arriving from opposite sides of the
q-contour when we decrease Res.#

Let us fix the parameterss andA and study the change
in character of the instability as we vary the remaining pa-
rameters c and B. Following an idea proposed by
Kuznetsov,23 we start with a search for the curves in the
(c,B) parameter plane that define the boundaries between
absolute and convective instabilities. Then it will be suffi-
cient to check the conditions of absolute instability at one
representative point in each domain of the partition.

A boundary for the absolute instability may be associ-
ated with such a curve in the parameter plane where some
branch pointsb crosses the imaginary axis and enters into the
right half-plane; the condition is

Re s~qb!50. ~19!

For c50, the set of equations~17! can be solved ana-
lytically. This gives the branch points associated with the
Hopf and Turing instabilities, respectively,

qH50, ~20!

sH5 1
2 @211B2A26 iA4A22~12B1A2!2#, ~21!

FIG. 3. Contours for integration in the complex planesq and s in the
absence~a! and presence~b! of an absolute instability. Dashed lines in the
q-plane are trajectories of the poles~dispersion equation roots! that are
traced while the variables runs along the contour in thes-plane. Branch
points are marked by crosses, and the branch cuts are shown by solid lines.
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qT56 i F12B2A21A~111/s!~sB!1/2

12s G , ~22!

and

sT5
211B1sA222A~sB!1/2

12s
. ~23!

The branch points cross the imaginary axis in thes-plane
precisely at the valuesB5BH andBT , as given by Eqs.~15!
and ~16!. The points (0,BH) and (0,BT) are the starting
points for two curvesH andT in the (c,B) parameter plane
where the branch points have vanishing increment Res. To
find these curves numerically, it is convenient to rewrite Eqs.
~17! and ~19! in the form

D~v,q!50, cDv~v,q!1Dq~v,q!50 ~24!

and

Re~v2cq!50, ~25!

where

v5s1cq ~26!

and

D~v,q!5~v2B112sq2!~v1A22q2!1A2B. ~27!

Dv andDq denote partial derivatives of the functionD. We
substitute q5qr1 iqi , v5cqr1 iv i and consider Eqs.
~24!–~27! as a set of equations in four real unknowns
$qr ,qi ,v i ,B%. This set may be solved numerically by New-
ton’s method while step-by-step increasing the parameter
c, starting from the points (0,BH) and (0,BT) where the
solutions are known. In Fig. 4 we show the curves found for
three different values ofA with s50.25.

In a similar manner we can trace simultaneously two
branch pointssb,H andsb,T in dependence onc andB. By
scanning the parameter region of interest and calculating the
differenceD5Resb,H2Resb,T , we find the curves whereD
changes sign. They are shown in Fig. 4 as dotted lines
marked by symbolD.

Dependent onA ands we observe several possible situ-
ations for the mutual location of the boundary linesH, T,
andD.

The threshold for the Hopf instability@see Fig. 4~a!#, B
511A2 falls below the Turing threshold. For smallc, the
curveH is located belowT. At somec, however, they cross
each other. The curveD consists of three pieces that meet at
the ‘‘triple point’’ located above the curvesH andT. @For
c andB corresponding to the triple point the saddle points
responsible for the Hopf and Turing instabilities merge. With
respect toq, Eqs. ~17! here have two complex conjugate
triple roots.# For B,11A2 the stationary spatially uniform
equilibrium state is stable, and any perturbation can only
decay. In the domain of instabilityB.11A2 we have six
regions denoted by Roman numerals. Branch points with
positive growth rates Res are present in the regions II–VI.

Summarizing the results of the above analysis we have
the following conclusions:

~1! In regions I and II there is no absolute instability. In
spite of the presence of a branch point with positive in-
crement in region II, it does not satisfy the criterion; the
merging roots arrive from the same side of the integra-
tion contour in theq-plane.

~2! In regions III and IV, an absolute instability of Hopf type
takes place.

~3! In regions V and VI, both Hopf and Turing types of
instability are absolute. In region V, the Hopf instability
has the larger growth rate, and vice versa in regions VI.

When increasing the parameterA @see Fig. 4~b!#, the

FIG. 4. Domain in parameter plane for distinct behavior of small-amplitude
perturbations of the spatially-uniform state for the Brusselator flow model;
s50.25 andA51 ~a!, 1.3 ~b!, and 1.5~c!. The curvesH andT correspond
to crossing the imaginary axis ins-plane by the branch point associated with
Hopf of Turing instability, respectively. The dashed lineD is determined by
requiring equal time increments at the branch points for the Hopf and Turing
instabilities. There is only a convective instability in domains I and II.
Numbers III and further mark the domains of absolute instability. Shading
marks the parameter region where the edge perturbations become undamped
in space.
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triple point shifts downwards and crosses the intersection
point of the curvesH and T. ~From this moment a triple
point degeneration occurs in the left half-plane of the
s-variable, and it is no longer significant for the properties of
the instabilities.! While the Hopf threshold remains lower
than the Turing threshold (BH,BT), the linesH andT have
two intersections. The instability domain in Fig. 4~b! is par-
titioned into seven parts.

~a! In regions I and II there is no absolute instability.
~b! In region III, we have a Hopf absolute instability, while

in regions IV and V a Turing absolute instability oc-
curs. ~We recall that in the case under consideration
originally the Hopf threshold is lower! For sufficiently
high flow rates, the order in which the Hopf and Turing
absolute instabilities arise is interchanged as compared
with the case of low flow rates.!

~c! In regions VI and VII, both Hopf and Turing types of
instability are absolute. In region VI, the Hopf instabil-
ity has the larger growth rate, and vice versa in region
VII.

With further increase ofA @see Fig. 4~c!#, the Turing
threshold at zero velocity becomes lower than the Hopf
threshold. Now, the instability domain is placed at
B.(11As1/2)2. For smallc, the curveT falls belowH,
and for largerc they intersect. In the considered part of the
parameter plane we see only one piece of the lineD emanat-
ing from the intersection point of the curvesH andT. The
instability domain contains five regions.

~1! In regions I and II there is no absolute instability.
~2! In regions III and IV, we have Turing absolute instabil-

ity.
~3! In region V, both the Hopf and Turing types of instabil-

ity are absolute. The growth rate for the Turing instabil-
ity is always the larger.

III. NUMERICAL SIMULATION: ABSOLUTE
INSTABILITY AND PATTERN FORMATION IN THE
NONLINEAR FLOW SYSTEM

It is interesting to return to the original nonlinear set of
partial differential equations for the Brusselator flow model
~1! and ~2! and consider the observed large amplitude phe-
nomena in the context of the linear analysis of the absolute
and convective instabilities.

For the computer simulations we have used an implicit
difference method of the second order. Typical step values
Dx andDt ~in terms of the dimensionless position and time
variables! were about 0.1. The left edge boundary condition
had the form~3! with constantsU0 and V0 equal to the
equilibrium concentrationsA andB/A, respectively. For suf-
ficiently large length and flow ratec.0, the actual form of
the boundary condition atx5L is not relevant. In the com-
putations we assumed free-end conditions,

Uxux5L50, Vxux5L50. ~28!

As initial conditions we used the steady state concentra-
tions with small perturbations,

U~mDx,0!5A1jm , V~mDx,0!5B/A1hm , ~29!

wherej and h are random numbers with zero mean value
and a standard deviation of the order of 0.1.mDx
(m50,1,2,...,N) denote points in the numerical grid.

Figure 5 shows examples of spatio-temporal dynamics
observed in the distinct regions of parameter space discussed
in the previous section, and Fig. 6 illustrates the changes in
the pattern formation process that take place at the transition
from convective to absolute instability for the Hopf~a! and
the Turing~b! modes, respectively.

The left diagrams in Figs. 6~a! and 6~b! relate to the
situation where the instability is present but not absolute.
The wave perturbations are drifted down with the flow, and
after a while the system approaches the spatially uniform
steady state. The process appears like the motions of a front
that separates spatial regions with and without oscillations.
When decreasing the flow rate we observe that the front
propagation becomes slower. Zero front velocity corresponds
to the threshold of the absolute instability@the middle dia-

FIG. 5. Results of numerical simulations of the Brusselator flow model with
equilibrium input concentrations at the left edge of the reactor;s50.25,
A51. The spatio-temporal diagrams~a!–~f! show the dynamics ofU for the
points in the (c,B) parameter plane marked by the respective letters. The
initial conditions are stationary homogeneous states with small-amplitude
random perturbations. The dimensionless length of the reactor isL520.
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grams in Figs. 6~a! and 6~b!#. After crossing this boundary in
parameter space we observe that the front velocity changes
sign. If the fluctuations originally exist at the right edge of
the system, we see the front propagate to the left, until, fi-
nally, the entire system is involved in the oscillation-wave
dynamics~see diagrams to the right in Fig. 6!.

Usually, one can easily distinguish patterns arising due
to an absolute instability of Hopf or Turing type@see Fig. 6
and Figs. 5~c! and 5~d!#. In Figs. 5~e! and 5~f! we observe a
competition between Turing and Hopf absolute instabilities
~here the result is a dominance of the Hopf oscillations!.

It is worth noticing the specific character of the transi-
tion associated with the boundary of the absolute instability
in flow extended systems. In a system of large length this
transition is accompanied by the sudden appearance of finite
amplitude oscillations. However, this transition is reversible
without hysteresis; during a slow backwards parameter tun-
ing the oscillations disappear at the same parameter value
where they arose, because the ‘‘bifurcation’’ consist in the
reversion of the direction of propagation for the front sepa-
rating oscillating and steady parts of the medium. Depending
on this direction of propagation the bulk of the system ap-
pears to be involved or not to be involved in the oscillatory
dynamics. In Fig. 7 we compare typical plots of amplitude vs
parameter for usual soft and hard low-dimensional bifurca-
tions ~a andb! and for the transition under discussion (c).
~Actually, the amplitude jump becomes infinitely narrow
only in the asymptotics of large lengthL.!

Figure 8 presents a number of spatio-temporal diagrams
for a case where the parameter plane arrangement is similar
to that of Fig. 4~b!. However, to distinguish the characteristic

regimes more clearly, we have used the valuess50.4 and
A50.25. For small flow ratesc, the onset of oscillations
with increasingB is associated with the appearance of a
Hopf type absolute instability@Fig. 8~a!#. For larger values of
c, the threshold of absolute instability for the Turing mode
becomes lower than that of the Hopf mode. One can see the
appearance and growth of the Turing patterns in Figs. 8~b!–
8~d!. @The instability is absolute in cases~8b! and ~8d! but
not in ~8c!#. This example illustrates the possibility of con-
trolling the type of instability that occurs~as well as the type
of the patterns generated! by tuning the flow rate.

IV. THRESHOLD FOR SPATIALLY UNDAMPED TAILS:
CHERENKOV CONDITION

Let us discuss a situation where the input concentrations
of the reagentsU andV differ from those for the homoge-
neous steady state. With a constant input flow of the re-
agents, a stationary spatial distribution may then arise and be
stable. In this case, the concentration dependence onx is
governed by Eqs.~1! and~2! with vanishing time derivatives.

In the linear approximation we can analyze the spatial
dependence for the concentration perturbations by means of
the dispersion equation~13! with s50,

~cq2B112sq2!~cq1A22q2!1A2B50. ~30!

For c50, this equation becomes quadratic inq2, and we can
easily find all four roots; two with negative and two with

FIG. 6. Change in the nature of the pattern formation process at the transi-
tion from convective~left diagrams! to absolute instability~right diagrams!
for Hopf ~a! and Turing~b! modes. The flow speed is decreased from the left
to the right pictures, other parameters are maintained constant. The middle
diagrams correspond to the threshold of the absolute instability. Dimension-
less length;~a! L550, ~b! L530.

FIG. 7. Amplitude dependence on a parameter; comparison of soft~a! and
hard ~b! bifurcations in low-dimensional systems with the transition from
convective to absolute instability in extended system for the situation asso-
ciated with reversal of the direction of front propagation~c!.
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positive real parts. For an unbounded system with constant
perturbation at the origin the first two roots govern the spa-
tial decay of the solution forx.0, and the second two roots
the decay forx,0. Let us now increase the flow ratec. It
may then occur that one of the roots responsible for the re-
gion x.0 crosses the imaginary axis and enters the right
half-plane. This implies the onset of spatial amplification
~convective instability! for a perturbation of zero frequency.

To find the associated condition of criticality, we insert
q5 ik, k real, and separate the real and imaginary parts in
Eq. ~30!. This gives the desired condition

c25~12B1sA2!/~11s!1A2~11s!/~B212A2!
~31!

and defines a certain curve in the (c,B) parameter plane.
Above this curve the stationary wave perturbations are un-
damped in space. In Fig. 4 these regions are shaded.

We have performed a variety of computer simulations of
the spatio-temporal dynamics for a case of nonequilibrium
input concentration ofU. The results are shown in Fig. 9.
Below the boundary~31! the dynamics far from the left edge
of the reactor remains the same as for equilibrium input con-
centrations@Figs. 9~a! and 9~b!#. However, near the left edge
of the reactor we can see the formation of stationary spatial
patterns. This tail decays in space, but becomes longer and
longer as we move in the parameter plane towards the
boundary given by Eq.~31!. At this boundary and above, the
conditions at the left edge influence the entire reactor space
even in the case of very large lengthL. In the absence of the
absolute instability, after the transient process we observe a
stationary space periodic pattern@Fig. 9~c!#. This pattern
forms the background state for instabilities that may take
place in the parameter region under consideration@see Fig.

9~d!#. It is likely that the periodic pattern influences the lo-
cation of the boundaries for the various instabilities. It is
difficult to detect this effect in the numerical simulation,
however.

In the frame moving with the flow the phenomenon may
be interpreted as a ‘‘Cherenkov effect,’’ the condition for
emission of the wave from the moving local perturbation~the
edge! is that the wave phase velocity and the velocity of the
source be equal. Note that only the Hopf instability gives rise
to such an effect. Actually, the spatial oscillations of the
concentrations must be stationary in the laboratory frame,
but an observer moving with the flow will se temporal oscil-
lations with a nonzero frequency. The Turing instability in
the moving frame arises just at zero frequency. It is interest-
ing to notice that the Cherenkov effect may give rise to the
appearance of standing structures even when the diffusion
constants of the species are the same (s51).

V. CONCLUSION

We have considered an extended one-dimensional
reaction-diffusion model for the case of a moving mixture of
reagents. The presence of a flow gives rise to a number of
interesting phenomena. The Hopf and Turing instabilities
can be either absolute or convective depending on the param-
eters. The transition to absolute instability is accompanied by
a reversal of the direction of propagation for the front that
separates spatial regions of steady state and wave oscillations
in the medium. The properties of this transition differ from
the bifurcations of low-dimensional systems; it is ‘‘hard’’
~the oscillations in a long system appear and disappear
abruptly when adiabatically tuning the control parameter! but

FIG. 8. Change of the nature of the absolute instability and pattern forma-
tion process in dependence of the flow velocity. Fors50.4, A52.05 in the
(c,B) parameter plane, the curvesH, T, andD are shown in a configuration
similar to Fig. 4~b!. The spatio-temporal diagrams illustrate the dynamics of
U at the points marked by the respective letters. While increasingB, an
absolute instability of Hopf type appears first and gives rise to oscillations at
small values ofc ~a!. For largerc, Turing patterns arise above the threshold
of absolute instability.

FIG. 9. Dynamics of the Brusselator flow model for a nonequilibrium input
concentrationUx505A10.4 and V5B/A. With s50.25, A51.5 the
curvesH, T, andD as well as the boundary of convective instability at zero
frequency~marked by shading! are reproduced from Fig. 4~c!. The spatio-
temporal diagrams demonstrate the dynamics ofU at the points in the
(c,B) parameter plane marked by the corresponding letters. The initial con-
ditions correspond to equilibrium concentrations of reagents. The dimen-
sionless length of the system isL540.
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reversible~there is no difference in the ‘‘bifurcation’’ point
during the forward and reverse tuning the parameter!.

Depending on the control parameters it is possible to
observe a local or a global influence of the boundary condi-
tions on the spatio-temporal dynamics of the flow extended
system. In the latter case the intrinsic instabilities will de-
velop on the background of the pattern formed due to the
presence of the boundary.

The situation that we have considered in this paper is
directly amenable for experimental research on instabilities
in reaction-diffusion systems. We expect that the various pe-
culiarities of the spatio-temporal dynamics in flow systems
can be observed under proper conditions, and that they will
be significant for a variety of industrial processes. It should
be noted, however, that the pinched point analysis may not
apply to systems with destabilizing nonlinearities such as, for
instance, in the case of a subcritical bifurcation.24
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