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The paper considers a one-dimensional Brusselator model with a uniform flow of the mixture of
reaction components. An absolute as well as a convective instability can arise for both the Hopf and
the Turing modes. The corresponding linear stability analysis is presented and supported by the
results of computer simulations of the nonlinear equations. Finally, the condition for spatially
undamped tailgthe Cherenkov conditigris obtained. This represents a new mechanism for pattern
formation in chemical reaction-diffusion systems. 197 American Institute of Physics.
[S0021-960807)01818-7

I. INTRODUCTION model of a reaction-diffusion system with uniform flow. As
illustrated in Fig. 1, the reagents are assumed to be pumped
Chemical reaction-diffusion systems can display instacontinuously into the lengthy reaction space from the left.
bilities of Hopf as well as of Turing typ&.2 The Hopf in-  The mixture of species moves with a constant speed along
stability is associated with the onset of spatially uniform os-the x-axis and leaves the reactor to the right. A setup of this
cillations in time as a pair of complex conjugated type is clearly of relevance for many industrial processes,
eigenvalues of the Jacobian for the kinetic equations crosand it may also provide relatively simple conditions for the
the imaginary axis. The Turing instabilify® on the other experimental investigation of chemical instabilities. We shall
hand, arises as a single real eigenvalue crosses the imaginatgmonstrate that the pattern formation and spatio-temporal
axis, and the homogeneous steady state yields to the growttynamics in the flow system depend crucially on the flow
of spatial patterns of finite wavelength. In one dimensionrate and that they can arise either in the form of convective
this pattern has the form of a stripe structure. The conditioror in the form of absolute instabilities.
for the Turing instability to arise before the Hopf instability An instability in a spatially extended system with trans-
is usually that the diffusion constants of the basic reagentkation invariance is termed absolute if a localized initial per-
are very different so that we can have short range activatioturbation gives rise to growing amplitudes at all fixed points
and long range inhibition. in space. This is illustrated in Fig.(@. The instability is
By contrast, for instance, to hydrodynamical instabili- called convective if the growing perturbation drifts in such a
ties, the Turing instability is characterized by an endogeway that observation at a fixed point asymptotically shows
neously controlled wavelength, determined by the rates ofin amplitude that decays towards zgFdg. 2(b)]. The for-
reaction and diffusion of the involved chemical species. Amal analysis of absolute and convective instabilities has been
related phenomenon is the formation of Liesegang rifys, developed and widely applied in hydrodynamics, plasma
where the chemical reaction-diffusion processes are couplehysics, electronics and other fiefds!® To the best of our
with physical precipitation. Recently, yet another instability knowledge, however, only a few studies have hinted at this
has been studi@dhat arises due to different flow velocities approach in connection with reaction-diffusion systefhis!
for the activator and inhibitor species. One of our aims is therefore to draw more attention to these
Over the years a variety of different reaction-diffusion useful concepts. We complete the analysis by discussing the
models have been investigated, including the Brusselator arfderenkov condition for the emergence of spatially growing
Schnackenberg models, the Lengyel-Epstein model, and tHails. This provides a new mechanism for pattern formation
Gray-Scott model. These studies have been directed, amotitychemical reaction-diffusion systems that can operate even
other things, towards elucidating the formation of localizedWith equal diffusion constants.
structures® the emergence of secondary instabilities such as
the Eckhaus and zig—zag instabilitidsthe competition of
different modes in ramped systefifsand the so-called spot-
multiplication in systems exhibiting bistability.In all cases,
the reaction-diffusion processes have been considered to take Let us consider the well-known Brusselator model as an
place in a resting medium. example of a reaction-diffusion system that can produce Tur-
The purpose of the present paper is to investigate ing and Hopf instabilitie:?> With proper choice of space

II. LINEAR STABILITY ANALYSIS FOR THE SYSTEM
WITH FLOW
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FIG. 1. Sketch of the reaction-diffusion flow model. The reagekt&n
excesy B (in excesy U, andV are pumped from the left edge. Their -i:
mixture moves with constant speed along xkaxis and leaves the reactor at 2
the right edge. 5
X —= b)

and time units, and including the convective terms, this

model is represented by the following kinetic equations:
P y 9 q FIG. 2. Evolution of a localized perturbation in one-dimensional extended

U+cU,=A-BU-U+U 2\/+ U x (1) system in the cases of absol® and convectiveb) instabilities.

and

Vit eV=BU=UV+V,, @) wheres andq are complex variables. In formul@) for the
with U andV denoting the concentrations of the interactingbackward transformation, the integration contour in the
chemical specie®\ andB are externally controlled feed con- g-plane is the imaginary axis. In theplane the contour is
centrationsc is the flow rate, andr is the ratio of the two parallel to the imaginary axis and located to the right of all
diffusion constants. singularities of the integrand.

These equations obviously allow for the homogeneous After this transformation, the kinetic equations read
steady state solutiod =A andV=B/A. Let us denote the

2 2 —
input concentrations for the two reagentsty andV,. The (s+€q=B+1-009)Usq=AVsq=F(0) (10
left-hand side boundary conditions then become and
Ulx=0=Uo and Vi-o=Vo. @ BUsq (s+cq+A2— ) V= G(0), (11)

In most of the following analyses we shall assume the

input concentrations to be equal to the steady state valué@here F(q) and G(q) are the trgnsfor_ms o1f(x)_ and .
A andBJ/A. g(x). To reveal the presence of an instability and disclose its

Igharacter, it is sufficient to consider one variable, HayBy

Let us start with a spatially unbounded system and as : _ . .
the question: How will the dynamics depend on the param3°VINg the linear equationl0) and (11) we find Usq and

etersA, B, o, andc for a localized small initial perturbation Ithen usfe thel ba?ktv_var.d transformati) to obtain the fol-
of the homogeneous steady state? We substitute owing formal sofution.

U=A+u(x,t) and V=B/A+uv(x,t) (4) u(x,t) = — % Jﬁfixe“ds

into the kinetic equations and assufug,|v| < 1. Then, in T i

the linear approximation, we have +ie (s+cq+A2—g?)F(q)+A%G(q)
Ui+ CU=(B—1)u+A% + oy, (5) x ﬁim D(s,a) erda
Vit Cuy=—BU—AZ0+vy. (6) (12
We suppose that the initial conditions are where the denominator
uli=o=F(x) and v|;-o=9(x), (M D(s,q)=(s+cq—B+1-0cg?)(s+cq+A®—q?) +A2B.

where the functionsf(x) and g(x) decay rapidly for ynder integration(12), q runs along the imaginary axis.
x— * =. Following the standard approach, let us now per-jence, the solutioru(x,t) will contain components that

form a Laplace transformation of the linearized equationsgrow with time if there exist purely imaginary valuesepfor
over the two independent variablesndt. Forx we use the \yhich the dispersion equation

so-called two-sided version of the transformation. The rela-

tions for the forward and backward transforms are (stcq—B+1-—0g?)(s+cq+A?—g?)+A?B=0 (13
* * _ has a roos with positive real part. This is just the condition
= st gx
Usq f € dtf_mu(x,t)e dx (8) for instability. From the quadratic equati¢h3) we find the
roots
and
1 fﬁﬂm o [ . S12=—CQ— 3 {1-B+A%-gq®—q?
ux,t)y=—-— edsf U,.e%dq, 9
XO=" 7 B I e © +[(1-B—A2—0q?+q?)?—4A%B]Y3. (14

J. Chem. Phys., Vol. 106, No. 18, 8 May 1997
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Substitutingg=ik, we see that the onset of the instability
does not depend on the flow ratfe parametec does not
influence the real part of the rodts = I
It follows from Eg.(14) that the instability occurs in the
range of wave numbers nek=0 for L

s-contour

B>Bu=1+A2 (15

and neak= +AY25~14 for

B>B:=(1+Ac'??2 (16)

cuts s-contour
L~

/]

i

These expressions coincide with the well-known instability
conditions for the Brusselator model without flé@The first
type of instability is associated with a Hopf bifurcation in the
spatially uniform system. This instability appears at the
threshold as oscillations with frequendy=Im s=A and
wave numbek=0. The second type is the Turing instability.
Forc=0 (no flow) it arises at zero frequency. For: 0 the
frequency at the threshold of the instability differs from zero,riG. 3. contours for integration in the complex plangsand s in the
Q=Ims=ck This may be considered as a Doppler fre-absencda) and presencé) of an absolute instability. Dashed lines in the
quency shift; the Turing pattern with wave numliemoves g-plane are trajecto_ries of the polédispersion eq_uation rogtshat are
in the laboratory frame with velocity, producing the fre-  126%0 ¥l 1 veabe s dang e conour o vepare Drreh
quency{Q =ck.
Now we have to determine whether the Hopf and Turing
instabilities are absolute or convective. For this aim we must ,
estimate carefully the integré&l2) and study the asymptotic D(s,q)=0 and s’(q)=0. 17
behavior of the solutiom(x,t) for t—o andx=const. If the root of Eq.(17) s=s,=5(qp) is located in the right
Following Briggs® and Bers,’ we may try to evaluate half-plane, the instability is absoluté!” In this case the part
the outer integral by shifting the contour in teelane to the  of the s-contour running along the edges of the branch cut
left, as far as possible without crossing any singularity of theand around the branch poiffig. 3(b), right] gives an in-
integrand. If the system is stable, we can shift the contour irtreasing contribution to the integral
this way and place it entirely in the left half-plane. In this 12
case the estimate for the solution yielfis(x,t)|<const ux,t=t EXPSpt + GpX).- (18)
-.e A where the rate constaptis the numerical value of the [We recall that not all the branch points that may be obtained
real part of that singularity which is closest to the imaginaryfrom Eq. (17) give rise to an absolute instability. Only those
axis in thes-plane. are relevant that appear due to merging of roots of the dis-
If an instability occurs, a similar trick may be successfulpersion equation arriving from opposite sides of the
as long as the function under the outer integral allows anag-contour when we decrease R¢
lytic continuation in thes-plane(to the imaginary axis and Let us fix the parameters and A and study the change
beyond. The procedure of the analytic continuation corre-in character of the instability as we vary the remaining pa-
sponds to a deformation of tliecontour(the contour for the rameters ¢ and B. Following an idea proposed by
inner integral that preserves the original bypass rules for theKuznetso?® we start with a search for the curves in the
poles[zeros of the denominat@(s,q)]. If we can place the (c,B) parameter plane that define the boundaries between
s-contour in the left half-plane while satisfying the above absolute and convective instabilities. Then it will be suffi-
conditions, at any fixed position the perturbatiofx,t) de-  cient to check the conditions of absolute instability at one
cays exponentially with time. Thus, the supposed instabilityrepresentative point in each domain of the partition.
can be only convective. Figurgd@ shows the typical con- A boundary for the absolute instability may be associ-
figuration of the integration contours in tlipand s-planes  ated with such a curve in the parameter plane where some
for this case. The dotted lines in the left diagram are trajecbranch poins, crosses the imaginary axis and enters into the
tories of the poles in thg-plane traced while runs along right half-plane; the condition is

(o] Re s

the integration contour in the-plane. _
. . . Res =0. 19
When trying to shift thes-contour to the left it may (Gb) _ (19
occur, however, that we find theecontour pinched between For c=0, the set of equation€l?) can be solved ana-

two poles that arrive from opposite sides and mdgig.  Iytically. This gives the branch points associated with the
3(b)]. This implies the presence of a branch point of theHopf and Turing instabilities, respectively,

function q(s). In other words, the dispersion equation has 9u=0 (20)
here a double roofwith respect tog). The algebraic condi- '
tions for this situation to arise are Sy=31[—1+B—A?*iJ4A2— (1-B+A??], (21)

J. Chem. Phys., Vol. 106, No. 18, 8 May 1997
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[1-B-A2+A(1+1/o)(0B)Y2 3.5¢
qr==I 1-o , (22

and

—1+B+oA?—2A(oB)?

1-o

5= (23 B

The branch points cross the imaginary axis in fhplane
precisely at the valueB=B andB+, as given by Eq9.15)
and (16). The points (By) and (OB;) are the starting
points for two curvedd andT in the (c,B) parameter plane o c 2
where the branch points have vanishing incremens.Re
find these curves numerically, it is convenient to rewrite Egs.
(17) and(19) in the form

Stability

D(w,q)=0, cD,(®,q)+Dy(w,q)=0 (24)
and
Re(w—cq)=0, (29)
where
andw=s+cq (26) 2.50 Stazlllty J b)

D(w,q)=(w—B+1—00g?)(w+A2—g?)+A%B. (27)

D, andD denote partial derivatives of the functitn We
substitute g=q,+iq;, w=cq,+iw; and consider Egs.
(24)—(27) as a set of equations in four real unknowns
{q,,qi ,w; ,B}. This set may be solved numerically by New-
ton’s method while step-by-step increasing the parameter
c, starting from the points (B,) and (OB;) where the
solutions are known. In Fig. 4 we show the curves found for
three different values oA with o=0.25. Stability
In a similar manner we can trace simultaneously two o c 2z ©
branch pointss, ; ands 1 in dependence oo andB. By
scanning the parameter region of interest and calculating thIgG. 4. Domain in parameter plane for distinct behavior of small-amplitude
differenceA = Res,y—Res,r, we find the curves whera perturbations of the spatially-uniform state for the Brusselator flow model;

changes sign. They are shown in Fig. 4 as dotted lineg=0.25andA=1 (a), 1.3(b), and 1.5(c). The curveH andT correspond
marked by symboD. to crossing the imaginary axis #plane by the branch point associated with

_ Dependent orA ando we observe several possible situ- ¢ T8t ek o e opt and Taring
ations for the mutual location of the boundary linds T, instabilities. There is only a convective instability in domains | and II.
andD. Numbers Ill and further mark the domains of absolute instability. Shading
The threshold for the Hopf instabilifisee Fig. 4a)], B marks the parameter region where the edge perturbations become undamped
=1+ A2 falls below the Turing threshold. For smal) the " P3°®
curveH is located belowl. At somec, however, they cross
each other. The curv@ consists of three pieces that meet at
the “triple point” located above the curved andT. [For
¢ and B corresponding to the triple point the saddle points
responsible for the Hopf and Turing instabilities merge. With
respect toq, Egs.(17) here have two complex conjugate
triple roots] For B<1+ A? the stationary spatially uniform
equilibrium state is stable, and any perturbation can onl
decay. In the domain of instabilitB>1+A? we have six
regions denoted by Roman numerals. Branch points wit
positive growth rates Reare present in the regions II-VI.
Summarizing the results of the above analysis we have
the following conclusions: When increasing the parametér [see Fig. 4b)], the

(1) In regions | and Il there is no absolute instability. In
spite of the presence of a branch point with positive in-
crement in region Il, it does not satisfy the criterion; the
merging roots arrive from the same side of the integra-
tion contour in theg-plane.

);2) In regions Il and 1V, an absolute instability of Hopf type
takes place.

I43) In regions V and VI, both Hopf and Turing types of

instability are absolute. In region V, the Hopf instability

has the larger growth rate, and vice versa in regions VI.

J. Chem. Phys., Vol. 106, No. 18, 8 May 1997
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triple point shifts downwards and crosses the intersection 3.5
point of the curvesH and T. (From this moment a triple

point degeneration occurs in the left half-plane of the

s-variable, and it is no longer significant for the properties of

the instabilities. While the Hopf threshold remains lower

than the Turing thresholdB;<B), the linesH andT have

two intersections. The instability domain in Figib# is par- B
titioned into seven parts.

(@ Inregions | and Il there is no absolute instability.

(b) Inregion lll, we have a Hopf absolute instability, while
in regions IV aml V a Turing absolute instability oc-
curs. (We recall that in the case under consideration 1.5
originally the Hopf threshold is lower! For sufficiently 0 c 2
high flow rates, the order in which the Hopf and Turing

with the case of low flow ratek.

(¢) Inregions VI and VII, both Hopf and Turing types of
instability are absolute. In region VI, the Hopf instabil-
ity has the larger growth rate, and vice versa in region
VII.

With further increase ofA [see Fig. 4c)], the Turing
threshold at zero velocity becomes lower than the Hopf
threshold. Now, the instability domain is placed at
B>(1+Ac*d?2. For smallc, the curveT falls belowH,
and for largerc they intersect. In the considered part of the
parameter plane we see only one piece of thelinemanat-
ing from the intersection point of the curvésandT. The
instability domain contains five regions.

=N

(1) In regions | and Il there is no absolute instability. N
(2) In regions Il and IV, we have Turing absolute instabil-

ity. FIG. 5. Results of numerical simulations of the Brusselator flow model with
(3) In region V, both the Hopf and Turing types of instabil- equilibrium input concentrations at the left edge of the reaatcr0.25,

; : ; :1_A=1. The spatio-temporal diagrartey—(f) show the dynamics df for the
ity are absolute. The growth rate for the Turing instabil points in the €,B) parameter plane marked by the respective letters. The

ity I1s always the |arger- initial conditions are stationary homogeneous states with small-amplitude
random perturbations. The dimensionless length of the reactor 0.

II. NUMERICAL SIMULATION: ABSOLUTE
INSTABILITY AND PATTERN FORMATION IN THE
NONLINEAR FLOW SYSTEM U(mAX,00=A+ ¢, V(mAX,00=B/A+ 7, (29

It is interesting to return to the original nonlinear set of where ¢ and » are random numbers with zero mean value
partial differential equations for the Brusselator flow modeland a standard deviation of the order of 0.hAx
(1) and (2) and consider the observed large amplitude phe{m=0,1,2...,N) denote points in the numerical grid.
nomena in the context of the linear analysis of the absolute Figure 5 shows examples of spatio-temporal dynamics
and convective instabilities. observed in the distinct regions of parameter space discussed
For the computer simulations we have used an implicitin the previous section, and Fig. 6 illustrates the changes in
difference method of the second order. Typical step valuethe pattern formation process that take place at the transition
Ax andAt (in terms of the dimensionless position and time from convective to absolute instability for the Hofz) and
variableg were about 0.1. The left edge boundary conditionthe Turing(b) modes, respectively.
had the form(3) with constantsU, and V, equal to the The left diagrams in Figs.(6) and €b) relate to the
equilibrium concentrations andB/A, respectively. For suf- situation where the instability is present but not absolute.
ficiently large length and flow rate>0, the actual form of The wave perturbations are drifted down with the flow, and
the boundary condition at=L is not relevant. In the com- after a while the system approaches the spatially uniform
putations we assumed free-end conditions, steady state. The process appears like the motions of a front
Udyel =0, Vilyo =0 28) that separates .spatial regions with and without oscillations.
XIx=L7 M Exix=L When decreasing the flow rate we observe that the front
As initial conditions we used the steady state concentrapropagation becomes slower. Zero front velocity corresponds
tions with small perturbations, to the threshold of the absolute instabilitthe middle dia-

J. Chem. Phys., Vol. 106, No. 18, 8 May 1997
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for Hopf (a) and Turing(b) modes. The flow speed is decreased from the left Parameter

to the right pictures, other parameters are maintained constant. The middle c)
diagrams correspond to the threshold of the absolute instability. Dimension-
less lengthya) L=50, (b) L=230.

FIG. 7. Amplitude dependence on a parameter; comparison of@cadind
hard (b) bifurcations in low-dimensional systems with the transition from
. . . . . convective to absolute instability in extended system for the situation asso-
grams in Figs. @) and Gb)]. After crossing this boupdary N ciated with reversal of the direction of front propagatian
parameter space we observe that the front velocity changes
sign. If the fluctuations originally exist at the right edge of
the SyStem, we see the front propagate to the Ieft, Until, ﬁ'regimes more C|ear|y, we have used the valoes0.4 and
nally, the entire system is involved in the oscillation-wave o=0.25. For small flow rateg, the onset of oscillations
dynamics(see diagrams to the right in Fig).6 N with increasingB is associated with the appearance of a
Usually, one can easily distinguish patterns arising dugopf type absolute instabilityFig. 8a)]. For larger values of
to an absolute instability of Hopf or Turing tydeee Fig. 6 ¢, the threshold of absolute instability for the Turing mode
and Figs. &) and d)]. In Figs. Se) and §f) we observe a  pecomes lower than that of the Hopf mode. One can see the
competition between Turing and Hopf absolute |nstab|I|t|esappearance and growth of the Turing patterns in Fi¢js)-8
(here the result is a dominance of the Hopf oscillaions  g(d). [The instability is absolute in casé8b) and (8d) but
~ Itis worth noticing the specific character of the transi- not in (8¢)]. This example illustrates the possibility of con-
tion associated with the boundary of the absolute instabilityro|ling the type of instability that occur@s well as the type

in flow extended systems. In a system of large length thigf the patterns generatetly tuning the flow rate.
transition is accompanied by the sudden appearance of finite

amplitude oscillations. However, this transition is reversible .
without hysteresis; during a slow backwards parameter tunl_VHEEEEESSIEDOFN%TT%DI\?TIALLY UNDAMPED TAILS:
ing the oscillations disappear at the same parameter valu

where they arose, because the “bifurcation” consist in the et us discuss a situation where the input concentrations
reversion of the direction of propagation for the front sepa-of the reagent$) andV differ from those for the homoge-
rating oscillating and steady parts of the medium. Dependingieous steady state. With a constant input flow of the re-
on this direction of propagation the bulk of the system ap-agents, a stationary spatial distribution may then arise and be
pears to be involved or not to be involved in the oscillatorystable. In this case, the concentration dependenc& @n
dynamics. In Fig. 7 we compare typical plots of amplitude vsgoverned by Eqg1) and(2) with vanishing time derivatives.
parameter for usual soft and hard low-dimensional bifurca- In the linear approximation we can analyze the spatial
tions (a andb) and for the transition under discussiot) (  dependence for the concentration perturbations by means of
(Actually, the amplitude jump becomes infinitely narrow the dispersion equatiofi3) with s=0,
only in the asymptotics of large length)

Figure 8 presents a number of spatio-temporal diagrams (ca—B+1-00°)(cqa+A’~q*) +AB=0. (30
for a case where the parameter plane arrangement is simil&or c=0, this equation becomes quadratiqf and we can
to that of Fig. 4b). However, to distinguish the characteristic easily find all four roots; two with negative and two with

J. Chem. Phys., Vol. 106, No. 18, 8 May 1997
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FIG. 8. Change of the nature of the absolute instability and pattern formag|G, 9. Dynamics of the Brusselator flow model for a nonequilibrium input
tion process in dependence of the flow velocity. be¥0.4,A=2.05inthe  concentrationU,_,=A+0.4 and V=B/A. With ¢=0.25, A=15 the

(c,B) parameter plane, the curvils T, andD are shown in a configuration  cyryesH, T, andD as well as the boundary of convective instability at zero
similar to Fig. 4b). The spatio-temporal diagrams illustrate the dynamics of frequency(marked by shadingare reproduced from Fig.(é). The spatio-

U at the points marked by the respective letters. While increaBingn temporal diagrams demonstrate the dynamicsUoft the points in the
absolute instability of Hopf type appears first and gives rise to oscillations afc,B) parameter plane marked by the corresponding letters. The initial con-
small values ot (&). For largerc, Turing patterns arise above the threshold gitions correspond to equilibrium concentrations of reagents. The dimen-
of absolute instability. sionless length of the system lis=40.

positive real parts. For an unbounded system with constary(q)]. It is likely that the periodic pattern influences the lo-
perturbation at the origin the first two roots govern the spacation of the boundaries for the various instabilities. It is
tial decay of the solution fox>0, and the second two roots gjtficult to detect this effect in the numerical simulation,
the decay forx<<0. Let us now increase the flow rate It  powever.
may then occur that one of the roots responsible for the re- | the frame moving with the flow the phenomenon may
gion x>0 crosses the imaginary axis and enters the righpe interpreted as a “Cherenkov effect,” the condition for
half-plane. This implies the onset of spatial amplificationgmission of the wave from the moving local perturbatithe
(convective instability for a perturbation of zero frequency. edgg is that the wave phase velocity and the velocity of the
To find the associated condition of criticality, we insert soyrce be equal. Note that only the Hopf instability gives rise
q=ik, k real, and separate the real and imaginary parts iRy such an effect. Actually, the spatial oscillations of the
Eqg. (30). This gives the desired condition concentrations must be stationary in the laboratory frame,
c2=(1-B+aA?)/(1+0)+A%(1+0)/(B—1—A2) but an observer moving with the flow will se temporal oscil-
(31) lations with a nonzero frequency. The Turing instability in
the moving frame arises just at zero frequency. It is interest-

and deflnes a certain curve in the, ) paramet_er plane. ing to notice that the Cherenkov effect may give rise to the
Above this curve the stationary wave perturbations are un-

) . : appearance of standing structures even when the diffusion
damped in space. In Fig. 4 these regions are shaded. .

We have performed a variety of computer simulations Ofconstants of the species are the same: ().
the spatio-temporal dynamics for a case of nonequilibrium
input concentration ofJ. The results are shown in Fig. 9.
Below the boundary31) the dynamics far from the left edge V. CONCLUSION
of the reactor remains the same as for equilibrium input con- We have considered an extended one-dimensional
centrationg Figs. 9a) and 9b)]. However, near the left edge reaction-diffusion model for the case of a moving mixture of
of the reactor we can see the formation of stationary spatialeagents. The presence of a flow gives rise to a humber of
patterns. This tail decays in space, but becomes longer aridteresting phenomena. The Hopf and Turing instabilities
longer as we move in the parameter plane towards thean be either absolute or convective depending on the param-
boundary given by Eq.31). At this boundary and above, the eters. The transition to absolute instability is accompanied by
conditions at the left edge influence the entire reactor spaca reversal of the direction of propagation for the front that
even in the case of very large lendth In the absence of the separates spatial regions of steady state and wave oscillations
absolute instability, after the transient process we observe ia the medium. The properties of this transition differ from
stationary space periodic patteffig. 9c)]. This pattern the bifurcations of low-dimensional systems; it is “hard”
forms the background state for instabilities that may takdthe oscillations in a long system appear and disappear
place in the parameter region under considerafame Fig. abruptly when adiabatically tuning the control paramebeit
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