298 research outputs found

    A machine learning based personalized system for driving state recognition

    Get PDF
    Reliable driving state recognition (e.g. normal, drowsy, and aggressive) plays a significant role in improving road safety, driving experience and fuel efficiency. It lays the foundation for a number of advanced functions such as driver safety monitoring systems and adaptive driving assistance systems. In these applications, state recognition accuracy is of paramount importance to guarantee user acceptance. This paper is mainly focused on developing a personalized driving state recognition system by learning from non-intrusive, easily accessible vehicle related measurements and its validation using real-world driving data. Compared to conventional approaches, this paper first highlights the necessities of adopting a personalized system by analysing feature distribution of individual driverā€™s data and all driversā€™ data via advanced data visualization and statistical analysis. If significant differences are identified, a dedicated personalized model is learnt to predict the driverā€™s driving state. Spearman distance is also drawn to evaluate the differences between individual driverā€™s data and all driversā€™ data in a quantitative manner. In addition, five categories of classifiers are tested and compared to identify a suitable one for classification, where random forest with Bayesian parameter optimization outperforms others and therefore is adopted in this paper. A recently collected dataset from real-world driving experiments is adopted to evaluate the proposed system. Comparative experimental results indicate that the personalized learning system with road information significantly outperforms conventional approaches without considering personalized characteristics or road information, where the overall accuracy increases from 81.3% to 91.6%. It is believed that the newly developed personalized learning system can find a wide range of applications where diverse behaviours exist

    Dimension Reduction Aided Hyperspectral Image Classification with a Small-sized Training Dataset : Experimental Comparisons

    Get PDF
    Acknowledgments: This work was supported by Science and Technology Facilities Council (STFC) under Newton fund with grant number ST/N006852/1.Peer reviewedPublisher PD

    Data-driven situation awareness algorithm for vehicle lane change

    Get PDF
    A good level of situation awareness is critical for vehicle lane change decision making. In this paper, a Data-Driven Situation Awareness (DDSA) algorithm is proposed for vehicle environment perception and projection using machine learning algorithms in conjunction with the concept of multiple models. Firstly, unsupervised learning (i.e., Fuzzy C-Mean Clustering (FCM)) is drawn to categorize the driversā€™ states into different clusters using three key features (i.e., velocity, relative velocity and distance) extracted from Intelligent Driver Model (IDM). Statistical analysis is conducted on each cluster to derive the acceleration distribution, resulting in different driving models. Secondly, supervised learning classification technique (i.e., Fuzzy k-NN) is applied to obtain the model/cluster of a given driving scenario. Using the derived model with the associated acceleration distribution, Kalman filter/prediction is applied to obtain vehicle states and their projection. The publicly available NGSIM dataset is used to validate the proposed DDSA algorithm. Experimental results show that the proposed DDSA algorithm obtains better filtering and projection accuracy in comparison with the Kalman filter without clustering

    Personalized driver workload inference by learning from vehicle related measurements

    Get PDF
    Adapting in-vehicle systems (e.g. Advanced Driver Assistance Systems, In-Vehicle Information Systems) to individual driversā€™ workload can enhance safety and convenience. To make this possible, it is a prerequisite to infer driver workload so that adaptive aiding can be provided to the driver at the right time and in a proper manner. Rather than developing an average model for all drivers, a Personalized Driver Workload Inference (PDWI) system considering individual driversā€™ driving characteristics is developed using machine learning techniques via easily accessed Vehicle Related Measurements (VRMs). The proposed PDWI system comprises two stages. In offline training, individual driversā€™ workload is first automatically splitted into different categories according to its inherent data characteristics using Fuzzy C means clustering. Then an implicit mapping between VRMs and different levels of workload is constructed via classification algorithms. In online implementation, VRMs samples are classified into different clusters, consequently driver workload can be successfully inferred. A recently collected dataset from real-world naturalistic driving experiments is drawn to validate the proposed PDWI system. Comparative experimental results indicate that the proposed framework integrating Fuzzy C-means clustering and Support Vector Machine classifier provides a promising workload recognition performance in terms of accuracy, precision, recall, F1-score and prediction time. The inter-individual differences in term of workload are also identified and can be accommodated by the proposed framework due to its adaptiveness

    Bone-Derived Modulators That Regulate Brain Function: Emerging Therapeutic Targets for Neurological Disorders

    Get PDF
    Bone has traditionally been regarded as a structural organ that supports and protects the various organs of the body. Recent studies suggest that bone also acts as an endocrine organ to regulate whole-body metabolism. Particularly, homeostasis of the bone is shown to be necessary for brain development and function. Abnormal bone metabolism is associated with the onset and progression of neurological disorders. Recently, multiple bone-derived modulators have been shown to participate in brain function and neurological disorders, including osteocalcin, lipocalin 2, and osteopontin, as have bone marrow-derived cells such as mesenchymal stem cells, hematopoietic stem cells, and microglia-like cells. This review summarizes current findings regarding the roles of these bone-derived modulators in the brain, and also follows their involvement in the pathogenesis of neurological disorders. The content of this review may aide in the development of promising therapeutic strategies for neurological disorders via targeting bone

    Dimension reduction aided hyperspectral image classification with a small-sized training dataset: experimental comparisons

    Get PDF
    Hyperspectral images (HSI) provide rich information which may not be captured by other sensing technologies and therefore gradually find a wide range of applications. However, they also generate a large amount of irrelevant or redundant data for a specific task. This causes a number of issues including significantly increased computation time, complexity and scale of prediction models mapping the data to semantics (e.g., classification), and the need of a large amount of labelled data for training. Particularly, it is generally difficult and expensive for experts to acquire sufficient training samples in many applications. This paper addresses these issues by exploring a number of classical dimension reduction algorithms in machine learning communities for HSI classification. To reduce the size of training dataset, feature selection (e.g., mutual information, minimal redundancy maximal relevance) and feature extraction (e.g., Principal Component Analysis (PCA), Kernel PCA) are adopted to augment a baseline classification method, Support Vector Machine (SVM). The proposed algorithms are evaluated using a real HSI dataset. It is shown that PCA yields the most promising performance in reducing the number of features or spectral bands. It is observed that while significantly reducing the computational complexity, the proposed method can achieve better classification results over the classic SVM on a small training dataset, which makes it suitable for real-time applications or when only limited training data are available. Furthermore, it can also achieve performances similar to the classic SVM on large datasets but with much less computing time

    Personalized Driver Workload Inference by Learning From Vehicle Related Measurements

    Get PDF
    Adapting in-vehicle systems (e.g., advanced driver assistance systems and in-vehicle information systems) to individual drivers' workload can enhance both safety and convenience. To make this possible, it is a prerequisite to infer driver workload so that adaptive aiding can be provided to the driver at the right time and in an appropriate manner. Rather than developing an average model for all drivers, a personalized driver workload inference (PDWI) system considering individual drivers driving characteristics is developed using machine learning techniques via easily accessed vehicle related measurements (VRMs). The proposed PDWI system comprises two stages. In offline training, individual drivers workload is first automatically splitted into different categories according to its inherent data characteristics using fuzzy C-means (FCM) clustering. Then an implicit mapping between VRMs and different levels of workload is constructed via classification algorithms. In online implementation, VRMs samples are classified into different clusters, consequently driver workload type can be successfully inferred. A recently collected dataset from real-world naturalistic driving experiments is drawn to validate the proposed PDWI system. Comparative experimental results indicate that the proposed framework integrating FCM clustering and support vector machine classifier provides a promising workload recognition performance in terms of accuracy, precision, recall, F 1 -score, and prediction time. The interindividual differences in term of workload are also identified and can be accommodated by the proposed framework due to its adaptiveness

    New Driver Workload Prediction Using Clustering-Aided Approaches

    Get PDF
    Awareness of driver workload (DW) plays a paramount role in enhancing driving safety and convenience for intelligent vehicles. The DW prediction systems proposed so far learn either from individual driver's data (termed personalized system) or existing drivers' data indiscriminately (termed average system). As a result, they either do not work or lead to a limited performance for new drivers without labeled data. To this end, we develop clustering-aided approaches exploiting group characteristics of the existing drivers' data. Two clustering aided predictors are proposed. The first is clustering-aided regression (CAR) model, where the regression model for the cluster with the highest likelihood is adopted. The second is clustering-aided multiple model regression model, where the concept of multiple models is further augmented to CAR. A recent dataset from real-world driving experiments is adopted to validate the algorithms. Comparative results against the conventional average system demonstrate that by incorporating clustering information, both the proposed approaches significantly improve workload prediction performance

    Trajectory Clustering Aided Personalized Driver Intention Prediction for Intelligent Vehicles

    Get PDF
    Early driver intention prediction plays a significant role in intelligent vehicles. Drivers exhibit various driving characteristics impairing the performance of conventional algorithms using all drivers' data indiscriminatingly. This paper develops a personalized driver intention prediction system at unsignalized T intersections by seamlessly integrating clustering and classification. Polynomial regression mixture (PRM) clustering and Akaike's information criterion are applied to individual drivers trajectories for learning in-depth driving behaviors. Then, various classifiers are evaluated to link low-level vehicle states to high-level driving behaviors. CART classifier with Bayesian optimization excels others in accuracy and computation. The proposed system is validated by a real-world driving dataset. Comparative experimental results indicate that PRM clustering can discover more in-depth driving behaviors than manually defined maneuver due to its fine ability in accounting for both spatial and temporal information; the proposed framework integrating PRM clustering and CART classification provides promising intention prediction performance and is adaptive to different drivers

    Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring

    Get PDF
    Agriculture is facing severe challenges from crop stresses, threatening its sustainable development and food security. This work exploits aerial visual perception for yellow rust disease monitoring, which seamlessly integrates state-of-the-art techniques and algorithms including UAV sensing, multispectral imaging, vegetation segmentation and deep learning U-Net. A field experiment is designed by infecting winter wheat with yellow rust inoculum, on top of which multispectral aerial images are captured by DJI Matrice 100 equipped with RedEdge camera. After image calibration and stitching, multispectral orthomosaic is labelled for system evaluation by inspecting high-resolution RGB images taken by Parrot Anafi Drone. The merits of the developed framework drawing spectral-spatial information concurrently are demonstrated by showing improved performance over purely spectral based classifier by the classical random forest algorithm. Moreover, various network input band combinations are tested including three RGB bands and five selected spectral vegetation indices by Sequential Forward Selection strategy of Wrapper algorithm
    • ā€¦
    corecore