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Abstract

Reliable driving state recognition (e.g. normal, drowsy, and aggressive) plays a significant role in
improving road safety, driving experience and fuel efficiency. It lays the foundation for a number of
advanced functions such as driver safety monitoring systems and adaptive driving assistance systems.
In these applications, state recognition accuracy is of paramount importance to guarantee user ac-
ceptance. This paper is mainly focused on developing a personalized driving state recognition system
by learning from non-intrusive, easily accessible vehicle related measurements and its validation using
real-world driving data. Compared to conventional approaches, this paper first highlights the neces-
sities of adopting a personalized system by analysing feature distribution of individual driver’s data
and all drivers’ data via advanced data visualization and statistical analysis. If significant differences
are identified, a dedicated personalized model is learnt to predict the driver’s driving state. Spearman
distance is also drawn to evaluate the differences between individual driver’s data and all drivers’
data in a quantitative manner. In addition, five categories of classifiers are tested and compared to
identify a suitable one for classification, where random forest with Bayesian parameter optimization
outperforms others and therefore is adopted in this paper. A recently collected dataset from real-world
driving experiments is adopted to evaluate the proposed system. Comparative experimental results
indicate that the personalized learning system with road information significantly outperforms con-
ventional approaches without considering personalized characteristics or road information, where the
overall accuracy increases from 81.3% to 91.6%. It is believed that the newly developed personalized
learning system can find a wide range of applications where diverse behaviours exist.
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1. Introduction

Recent research interest in intelligent vehicles becomes more concentrated on how to enhance
driving safety, convenience, and improve fuel efficiency (St-Aubin et al., 2015; Birrell et al., 2015;
Jamson et al., 2015). To this end, a number of advanced functions have been developed such as Ad-
vanced Driver Assistance Systems (ADAS) (e.g. adaptive cruise control, collision avoidance systems),
In-Vehicle Information Systems (IVIS) (e.g. navigation and entertainment systems) (Ziegler et al.,
2011) and “economic driving” systems (Vaiana et al., 2014). Although these functions are to improve
driving experience, it should be also noted that inappropriate use of these advanced functions may
create problems such as increasing driver’s distraction and consequently annoying the driver or even
increasing the risk of traffic accidents (Ziegler et al., 2011; Yi et al., 2019a).

To mitigate the adverse effects so that these functions are more acceptable and user-friendly,
there is a trend towards developing “adaptive aiding” systems (Zhu et al., 2019; Ziegler et al., 2011;
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Hajek et al., 2013). In this approach, necessary aid is supplied to the driver at the right time and
in an appropriate manner; this is achieved by monitoring the driver’s driving states (e.g. normal,
drowsy or aggressive) in real time and adapting ADAS and IVIS systems accordingly (Hu et al., 2017;
Meiring and Myburgh, 2015). For instance, an earlier and more clear collision warning signal could
be generated to alert a driver under drowsy state compared to normal one in order to enhance driving
safety. An incoming phone call could be diverted to voice mail when driver workload is identified to be
higher than usual. Moreover, driving behaviours are closely related to fuel efficiency as it is reported
in (Xiong et al., 2019; Vaiana et al., 2014) that the difference in fuel consumption between normal
and aggressive driving (e.g. sudden acceleration, rapid breaking and harsh cornering) is estimated to
be as high as 40%. Aggressive driving can be warned in “economic driving” systems to improve fuel
efficiency (Vaiana et al., 2014). In all these applications, it is evident that driving state recognition
performance is of paramount importance.

A large number of studies is available on driving state recognition (readers are referred to recent
survey papers (Meiring and Myburgh, 2015; Wahlström et al., 2017) among others). In these al-
gorithms, driving state is recognized by analysing large volume of driving data collected by various
sensors including exteroceptive sensors (e.g. Global Navigation Satellite Systems (GNSS), magnetome-
ters, cameras), proprioceptive sensors (e.g. accelerometers, gyroscopes) and complementary sensors
such as vehicle’s On-Board Diagnostics (OBD). Based on the algorithms adopted, they can be broadly
divided into two categories namely heuristic rule based approaches (Castignani et al., 2015; Saiprasert
et al., 2017; Joubert et al., 2016) and machine learning based approaches (Hong et al., 2014; Chan-
daka et al., 2009; Woo and Kulić, 2016; Wu et al., 2016). In (Saiprasert et al., 2017), hard rules and
fuzzy logic are adopted to recognize different driving behaviours (e.g. hard acceleration/braking and
aggressive steering) by using yaw rate, jerk, speed and bearing signals respectively. This approach
is relatively intuitive, however, it is generally difficult to choose an appropriate threshold. Recent
work focuses more on different machine learning algorithms such as Support Vector Machines (SVM)
(Chandaka et al., 2009; Woo and Kulić, 2016), decision tree (Wu et al., 2016) and neural network
(Zhang et al., 2014). In these approaches, rather than using heuristic rules, driving state recognition
is achieved by learning from training dataset via classification algorithms.

1.1. Related work

Drivers may exhibit different driving states (or styles) under various driving situations such as
normal (or safe), drowsy, aggressive or even drunk driving (Hu et al., 2017; Meiring and Myburgh,
2015; Masala and Grosso, 2014). Normal driving is a reference driving state from which deviation (such
as drowsy or aggressive driving) can be identified, and to which a driver should adapt his behaviour.
Drowsy driving appears when drivers suffer from fatigue, which is usually followed by delayed reactions
and responses (Dong et al., 2011). It was reported in (Hailin et al., 2010) that 15%–20% of all vehicle
accidents are estimated to be related to sleepiness and that fatigue driving increases the risk of an
accident by four to six times. Aggressive driving is usually caused by driver impatience, annoyance, or
an attempt to minimise travelling time, which is usually associated with irregular and abrupt changes
in vehicle speed, quick changes in vehicle lateral position, and excessive acceleration or deceleration.
This type of driving behaviour is also closely related to road accident, and also results in unnecessary
fuel consumption than normal driving (Vaiana et al., 2014).

Real-time monitoring driver’s behaviours and providing adaptive assistance (e.g. driver assistance
systems) or timely feedback (e.g. economic driving systems) is an effective solution to improve road
safety, enhance driving experience and increase fuel efficiency (Kanarachos et al., 2018; Meiring and
Myburgh, 2015). The commonly used approach for driving state recognition is to analyse the Vehicle
Related Measurements (VRM), which includes speed, three-axis acceleration and orientation angles
via GPS and IMU, throttle position and airflow rate via OBD system (Kanarachos et al., 2018; Sun
et al., 2016). This is due to the fact that this approach is non-intrusive, easily accessible and has a
low requirement on working condition (Yi et al., 2019a,b) in comparison with physiological sensors
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based approaches (Zhang et al., 2015) or computer vision (via cameras) based approaches (You et al.,
2012). In the past decade, studies on VRM based monitoring system have been conducted due to
its engineering importance. These systems can be broadly divided into in-vehicle data recorder (e.g.
OBD system) based and smartphone based according to different sensors adopted for data acquisition
(Saiprasert et al., 2017). They can also be categorised into heuristic rule based (Castignani et al.,
2015; Saiprasert et al., 2017; Joubert et al., 2016) and machine learning based approaches (Hong
et al., 2014; Chandaka et al., 2009; Woo and Kulić, 2016; Wu et al., 2016) according to different
algorithms adopted for classification. As discussed in Introduction, machine learning based approaches
are drawing increasing attention due to less expert knowledge involved and high performance compared
to rule based approaches (Saiprasert et al., 2017). The flowchart for common VRM based driving state
recognition systems is depicted in Fig 1.

In-vehicle 
data recorder Smartphone 

Sensors 

VRM

All drivers’ data

Rule based 
approach

Machine 
learning

Driving state  Driving features

Classification algorithms

Feature selection
New

measurements

Driving 
State  

Figure 1: Flowchart for conventional generic driving state recognition system.

As shown in Fig 1, the driving state recognition system starts with driving data acquisition by using
different sensors. In conventional driving state recognition systems, different drivers’ driving data is
aggregated indiscriminately. On this basis, features are selected based on either expert knowledge or
different feature selection algorithms (Guyon and Elisseeff, 2003). In supervised learning, the feature
data for the purpose of algorithm training should be labelled appropriately, which corresponds to
particular driving states in this paper. With given training data (i.e. feature data with class labels),
different models can be applied to achieve the task of classification by using various algorithms. Then
with the arrival of new feature measurements, the driving state can be identified via the trained
classifier.

It should be highlighted that the aforementioned approaches train a generic (or average) model
using the driving data of existing drivers indiscriminately, and consequently may overlook the per-
sonalized driving characteristics of individual drivers (Yi et al., 2019a; Butakov and Ioannou, 2015;
Schnelle et al., 2017). In practice, different drivers may have distinct driving characteristics and pref-
erences, and as a result may experience different driving states even for a similar driving situation.
Therefore, it is not surprising that conventional generic/average state recognition models may lead to
a degraded performance for a particular driver (Zhang et al., 2019; Yi et al., 2019a; Hu et al., 2017).
To overcome this issue, this paper proposes a “personalized” driver state recognition system accom-
modating personalized driving characteristics (hidden in the driving data) of individual drivers and so
leading to a personalized driving state recognition system dedicated to a particular driver. Moreover,
contextual information regarding the driver, the vehicle, and the environment may also affect the
driving behaviours (Ji et al., 2004; Al-Sultan et al., 2013). Following this line of thought and without
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loss of generality, the road type information available in the experimental dataset is further considered
as an illustrating example to further improve the recognition performance.

The proposed personalized learning system is evaluated by using the existing real-world driving
dataset collected in (Romera et al., 2016), where five drivers of various background are required to
drive under three different behaviours (i.e. normal, drowsy and aggressive) on two types of roads (i.e.
motorway and secondary road) for groundtruth data collection. Naturalistic driving data of about
430 minutes including speed, orientation and three-axis acceleration are collected by using a cellphone
application entitled “DriveSafe” (Romera et al., 2016). In this work, comparative experiments are
conducted on different algorithms, where the results indicate that incorporating personalized char-
acteristics and road type information can substantially improve the algorithm performance. To the
best of the authors’ knowledge, this work is the first attempt to apply the concept of “personalized
learning” into driver state recognition along with real-world experimental data validation. To be
more exact, the contributions are summarized as follows:

(i) A personalized learning system is proposed for driving state recognition, where both individual
driver’s characteristics and road information are accommodated;

(ii) State-of-the-art feature analysis algorithms such as t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) are adopted to demonstrate the distinct driving characteristics of different drivers,
necessitating the “personalized learning”;

(iii) Five categories of classification algorithms are tested and compared to identify the most suitable
one for driving state recognition, where random forest with Bayesian hyperparameter optimiza-
tion outperforms others;

(iv) The newly proposed framework is validated by using an existing dataset from real-world driv-
ing experiments; comparative experimental results demonstrate that incorporating personalized
driving characteristics and road information substantially improves performance with overall
accuracy increasing from 81.3% to 91.6%.

The remainder of this paper is organized as follows. Section 2 formulates a problem for driving
state recognition. Section 3 provides theoretical background of this study, where methods of data
visualization, different classifiers, the approach of parameters optimization, and models are introduced.
In Section 4, comparative experiments are conducted to validate the proposed framework by using real-
world naturalistic driving dataset (i.e. UAH-DriveSet dataset). It demonstrates the construction of
the personalized driving state recognition system, results of data visualization, classifiers comparison,
and the personalized model with considering road information. In Section. 5, the primary outcomes
and limitations of the study are discussion. Section 6 concludes the paper.

2. Problem formulation

The primary objective of this paper is to build a personalized driving state recognition system
that considers both personalized driving characteristics and road information. The driver state is
considered as the output of the system. The measurements from different sensors (e.g. GPS, IMU,
gyroscope) are synchronized once per second, with discrete time instants t ∈ 1, . . . , T , into feature
vector Xt = [x1t , x

2
t , x

3
t , x

4
t , x

5
t , x

6
t , x

7
t , x

8
t ]
T , where.

• x1t and x2t are obtained by GPS, where x1t is a discrete variable representing road types (motorway
or secondary road in this paper). x2t is a continuous variable representing vehicle speed [km/h].

• x3t , x4t , and x5t are obtained by IMU and all of them are continuous variables. In particular, x3t , x
4
t , x

5
t

denote the vertical, lateral and longitudinal acceleration [Gs], respectively.
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• x6t , x7t , and x8t are obtained by gyroscope and all of them are continuous variables. In particular,
x6t , x

7
t and x8t represent the roll angle, pitch angle, and yaw angle [degrees], respectively.

The system behaviours change according to the driving state of a specific driver. A driver usually
has several different states (e.g. normal, drowsy, and aggressive) during driving. Thus, the problem of
driving state recognition can be transformed into a classification problem. However, different drivers
have different driving characteristics and driving preferences. Moreover, the driving state is also
affected by driving condition (e.g. road type). With a consideration of the above problems, the task
of accurate driving state recognition is formulated as follows:

• Analyse feature distribution between all drivers’ and a specific driver’s data. When the distribution
of all drivers’ data is significantly different from a specific driver’s data, a personalized model is
needed and very likely to outperform a conventional generic model.

• Select an appropriate classifier to recognize driving state. Classifier selection is very challenging,
therefore, several types of classifiers should be compared to identify the most suitable one.

• It is also tricky to tune the hyperparameters of classifiers. In order to address this problem, the
parameters of classifiers should be optimized in an automatic manner.

• After the most suitable classifier is selected, a personalized model without road information, a
generic model with road information (i.e. road-aware model) and a personalized model with road
information should be built based on the selected classifier. Moreover, the three models are compared
against a generic model without road information to validate their performance.

3. Theoretical background

In this paper, theoretical background involves in four parts: method of data visualization, classifier
selectin, parameters optimization, and models. 1) Different methods of data visualization are applied
to identify the difference between individual driver’s feature distribution and all drivers’ feature dis-
tribution. It is to determine the necessity of constructing the personalized model. 2) It is challenging
to determine an appropriate classifier for a specific application. To this end, several categories of
classifiers and their variants are compared to identify a suitable classifier for driving state recognition.
3) The parameters of classifiers should be optimized before having a comparison. 4) Based on the
most suitable optimized classifier, the proposed personalized model and personalized model with road
information are compared with generic model and road-aware model.

3.1. Methods of data visualization

To analyse the driving characteristics hidden in individual driving data, data visualization and
analysis is first conducted to investigate the distinct driving behaviours among different drivers so as
to demonstrate the necessities of personalized state recognition. Without the loss of generality, the
distribution of typical features and the distribution of entire features are visualised and analysed by
using histograms along with statistical analysis. It is generally difficult to analyze high-dimensional
feature data (with a dimension of seven in this work) by using histograms. Instead, t-SNE algo-
rithm is used to reduce the dimensionality of the entire feature distribution so that the entire feature
distribution can be visualised and analysed by using histograms along with statistical analysis.

For typical feature visualization, data analysis between different drivers is conducted on indi-
vidual features such as speed, acceleration. For one-dimensional random variable, histograms are an
effective way to graphically represent the distribution of numeric data (i.e. probability density func-
tion). In this approach, the entire range of values are first divided into a series of intervals and then
the number of values (or “relative” frequencies) that fall into each interval is counted. The differences
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between histograms can visually be described by their patterns such as symmetric, skewed left/right,
unimodal/bimodal/multimodal. Statistics can also be drawn accordingly. In this work, typical feature
histograms are plotted under various driving states for different drivers. Individual feature analysis is
effective, however, may overlook the correlation between different features. Therefore, the analysis of
entire feature distribution is also necessary.

For entire feature visualization, t-SNE (Maaten and Hinton, 2008) is adopted to make an
intuitive understanding. t-SNE is a powerful dimensionality reduction algorithm, which is used for
high-dimensional feature visualization. t-SNE can keep the relative distance of samples. It is achieved
by minimizing the Kullback-Leibler divergence between the distribution of measuring pairwise similar-
ities of the input objects and the distribution of measuring pairwise similarities of the corresponding
low-dimensional points in the embedding. For the same of completeness, t-SNE is briefly introduced
as follows.

Given high-dimensional input objects D = {x1, . . . , xN} and a distance function d(xi, xj), it is to
learn an s-dimensional embedding where every object is a point. An s-dimensional embedding set is
represented by ε = {y1, . . . , yN} with yi ∈ Rs. Therefore, the joint probabilities of t-SNE is defined
by pij , which measure the pairwise similarity between objects xi and xj , given by

pj|i =
e

−d(xi, xj)
2

2σ2i

N∑
k 6=i

e

−d(xi, xk)2

2σ2i

, pij =
pj|i + pi|j

2N
,

where pi|i = 0, σi is the bandwidth of Gaussian kernels, which is set so that the perplexity of the
conditional distribution Pi equals to a predefined perplexity u. In the s-dimensional embedding ε,
the similarities between yi and yj are measured using a normalized heavy-tailed kernel. A normalized
Student-t kernel with a single degree of freedom is drawn to calculate the embedding similarity qij
with qii = 0 between yi and yj , which is defined by

qi|j =
(1+ ‖ yi − yj ‖2)−1∑k 6=i
N (1+ ‖ yk − yi ‖2)−1

.

Dissimilar input objects xi and xj can be modelled by low-dimensional counterparts yi and yj due
to the heavy tails of the normalized Student-t kernel. The locations of the embedding points yi are
determined by minimizing the Kullback-Leibler divergence between the joint distributions P and Q,
given by

C(ε) = KL(P ‖ Q) =
∑N

j 6=i pij log
pij
qij
.

3.2. Classifier selection

In machine learning applications, it is generally not easy to select an appropriate algorithm for
the task of interest. Therefore, in this paper, various categories of classification algorithms are first
evaluated and compared by using all driver’s data so that the most suitable one for the task of driving
state recognition is identified. The algorithms tested in this paper contain five categories: discriminant
analysis, decision tree, k-nearest-neighbour, support vector machine and ensemble learning; since these
algorithms have been previously applied to similar classification tasks (Meiring and Myburgh, 2015;
Wahlström et al., 2017).

3.2.1. Discriminant Analysis

Discriminant analysis assumes classes generated from different Gaussian distributions (Ba et al.,
2017). Based on this assumption, data are classified into different classes. There are two variants of
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discriminant analysis including linear discriminant analysis and quadratic discriminant analysis. In
linear discriminant analysis, the means of different Gaussian distributions are vary and the variances
of different Gaussian distribution are the same. In quadratic discriminant analysis, the means and
variances of different Gaussian distributions are both different.

3.2.2. Decision Tree

Decision tree is nonparameteric method, which does not need to presume the distribution of a given
dataset (Pitombo et al., 2017). In decision tree, the most effective feature is selected to partition data
from root node until the certain conditions are met. According to the differences of tree structure,
decision tree can be further divided into simple, medium, and complex decision trees.

3.2.3. K-Nearest-Neighbours

K-nearest-neighbours (KNN) is a model-free classification algorithm, which does not need to pre-
determine model specification (Yu et al., 2011). KNN determines the category of a given sample by
using the closest observations in the feature space. According to different ways for calculating distance
between a given sample and its neighbours in feature space, several variants of KNN are proposed
such as fine, quadratic, coarse, cosine, cubic, and weighted KNN algorithms.

3.2.4. Support Vector Machines

Support Vector Machine (SVM) implements classification by discovering the maximum margin
boundary between the positive data and negative data and then this boundary is used to decide the
category of data (Yuan and Cheu, 2003). To reduce the computation load, training vector (termed
“Support Vectors”) are extracted to construct the classification boundary. The training vectors are
the data lying closest to the classification boundary. To fit into different applications, differnt kernel
functions should be embedded in the SVM such as linear, quadratic, cubic, fine Gaussian, medium
Gaussian, coarse Gaussian kernel.

3.2.5. Ensemble Learning

Ensemble learning is to combine several classifiers together to make a group decision (Chen et al.,
2017). Each classifier votes for the prediction result. The final decision relies on the vote result
and weight of each classifier. This learning mechanism can improve accuracy, generalizability, and
robustness. Several popular ensemble learning models are implemented and tested in this paper
including boosted trees, random forest, subspace discriminant, subspace KNN, and RUSBoot trees.

3.3. Parameters optimization

Tuning the parameters of a classifier is a tricky job. In order to find out the suitable values of
parameters, Bayesian optimization algorithm is used to achieve this goal. The purpose of Bayesian
optimization is to minimize an objective function f(x), which is the cross-validation loss of a classifier
in this work. To achieve a minimum classification loss, three key elements are involved: a Gaussian
process model of f(x), a Bayesian update strategy and an acquisition function a(x). A Gaussian
process model is used to generate prior distribution of f(x) and then it is updated at each new
evaluation. In order to obtain a prior distribution of f(x), kernel function of Gaussian process model
should be pre-defined. Here, Matern 5/2 kernel is adopted due to its good performance in spatial
statistics, machine learning and image analysis (Snoek et al., 2012) and Matern 5/2 kernel is given
by:

k(xi, xj) = σ2f (1 +

√
5r

σl
+

5r2

3σ2l
)e

(−
√
5r
σl

)

where r =
√

(xi − xj)T (xi − xj) is the Euclidean distance between xi and xj .

7



Bayesian update strategy is to revise the Gaussian process model according to new evaluation of
f(x). Then, the posterior distribution over gp(f |xi, yi) i ∈ N+ is obtained. While acquisition function
is used to determine the next evaluation point x based on a posterior distribution, denoted by:

a(x) = E[max(0, µ(xbest)− f(x))]

where xbest is the point achieving the minimum posterior mean and µ(xbest) is the minimum value of
the posterior mean. Readers are referred to (Gelbart et al., 2014; Bull, 2011) for more details.

3.4. Models

After a suitable classifier with parameter optimization is identified, four models are introduced
including the generic model without road information, the proposed personalized model, road-aware
model (i.e. the generic model with road information), and the proposed personalized model with road
information. To be more clear, the four models in this work are detailed as follow.

3.4.1. Generic model

All drivers’ data 
Train a classifier

Parameters optimization

Optimize parameters

Classification algorithm

Driving features

Driver state
Generic model

Produce

New 
measurements

Driver
state

Figure 2: Generic model for driving state recognition.

Generic/average model refers to the algorithm that aggregates and learns from all drivers’ data
indiscriminately and is directly applied to all drivers. Generic model is designed based on generic
driver behaviours, which provides reasonable performance for all drivers but may lead to a degraded
performance for a particular driver. Fig. 2 describes the procedure of training a generic model.

3.4.2. Personalized model

Individual 
drivers’ data 

Train a classifier

Parameters optimization

Optimize parameters

Classification algorithm

Driving features

Driver state

Personalized 
model

Produce

New 
measurements

Driver 
state

ID ?

Figure 3: Personalized model for driving state recognition (where, ID is to identify a specific driver).

Personalized model refers to the algorithm dedicated to a particular driver accommodating the
personalized driving characteristics. Personalized model focuses on individual driving behaviours
rather than generic driving behaviours and is trained by using personal data. For each driver, a model
is trained and then the corresponding model is used to recognize his/her driving state. The procedure
of building personalized model is presented in Fig. 3.
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Figure 4: Road-aware model for driving state recognition.

3.4.3. Road-aware model

Contextual information regarding the driver, the vehicle, and the driving environment also affects
the driving performance (Ji et al., 2004, 2006; Al-Sultan et al., 2013). For example, the driving
data under daytime and nighttime or rainy and shiny condition usually have significant differences
(Konstantopoulos et al., 2010). Conventional approaches accommodating this type of information
usually treat the context as new features or conduct statistical reasoning using Bayesian network (Ji
et al., 2004; Al-Sultan et al., 2013). The substantially increased features may require a large amount
of dataset or rely on prior probability information, which is inhibitive in our scenario.

Considering that this research is mainly focused on personalized driving state recognition, only road
type information available in the UAH-DriveSet data is fused into the personalized learning framework
to further improve its performance. This is achieved by dividing the training data into different
categories, so that road-aware classifiers are trained. It should be noted that although this approach
is simple, it is effective in the task of driving state recognition (see, Section 4.4.2 for comparative
results against generic model without contextual information). Fig. 4 presents the generic model with
road information in this paper.

3.4.4. Personalized model with road information

Personalized model with road information is to consider personalized driving characteristics and
road information simultaneously. This model is built hierarchically because even for the same driver,
the driver reflects diverse driving behaviours in different traffic condition (e.g. road type). In this
model, two models are trained to recognize driver state and both of them are based on personalized
driving preferences. The first one is used to recognize driver state when driving on the motorway. The
second one is applied to recognize driver state when driving on the secondary road. The procedure of
deriving personalized model with road information is demonstrated in Fig. 5.

4. Proposed personalized learning system

In this section, the development process of the proposed personalized learning system for driving
state recognition is elaborated. Vehicle-related measurements of drivers are used in classifier selection
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Figure 5: Personalized model with road information for driving state recognition (ID is to identify a specific driver).

and visualization analysis. In classifier selection, several different categories of classifiers and their
variants are implemented, where their hyperparameters are tuned by Bayesian optimization algorithm.
As a result, the most suitable classifier can be identified for driving state recognition. In visualization
analysis, two data visualization methods are adopted to analyse the differences between individual
driver’s and all drivers’ data. The first method is to analyse a typical feature such as speed or yaw
angle by using a histogram. The second method is to analyse the entire features. Considering that the
entire features are of a high-dimension (seven-dimensional), t-SNE is used to reduce dimensionality
from seven to two so that their differences can be identified visually and by statistical measures.
Then the similarity between a specific driver’s and all drivers’ data is evaluated in a quantitative
manner. The visualization analysis and similarity computation are to demonstrate the necessity of
constructing a personalized model. The philosophy is that if remarkable differences are identified (i.e.
similarity is higher than the threshold), a personalized model is very likely to outperform a generic
model. Moreover, road information is accommodated into the personalized model by considering that
a driver’s behaviours are affected by driving condition (e.g. road type). After a personalized model
with road information is constructed, the model can be used to recognize the driving state for a
specific driver based on incoming new measurements. To highlight the differences from conventional
generic systems, a flowchart is presented in Fig 6, where the blocks in orange with dashed lines are
the new blocks compared to a generic system as shown in Fig 1. It should be noted that the block
of visualization and analysis is to demonstrate the necessities of personalized state recognition; in
practical applications, this step can be automatically processed by the system without the involvement
of human’ visual inspection. The main differences between conventional generic learning system and
the proposed personalized learning system with road information are summarized below.

• Personalized driving characteristic analysis: state-of-the-art data analysis is conducted to investigate
the distinct driving behaviours among different drivers. If significant differences are identified in
terms of feature distribution (e.g. mean, variation), personalized model is adopted where a dedicated
model is trained for the particular driver so that personalized driving characteristics hidden in the
personalized driving data are accommodated. Otherwise, the conventional generic model for all
drivers is retained;
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Figure 6: Flowchart of the proposed personalized learning system with road information, where the blocks in orange
with dashed lines are new components and conducted offline compared to the conventional one in Fig 1.

• Road information available in the experimental dataset is fused into the framework to further
enhance the performance, since it can provide useful background information regarding the driving
environment.

• Five categories of classification algorithms are implemented and compared to identify the most
suitable one for the task of driver state recognition.

In the following parts, different components of the proposed system are elaborated.

4.1. Real-world driving dataset

The existing real-world UAH-DriveSet dataset is adopted to validate the algorithms in this paper,
which was collected in 2016 using a smartphone app DriveSafe for the purpose of deep driving be-
haviour analysis (Romera et al., 2016). In this dataset, six different drivers are involved where each
driver is required to perform three different behaviours (i.e. normal, drowsy and aggressive) on two
types of roads (i.e. motorway and secondary road) as shown in Fig 7.

Under the careful experiment setup in (Romera et al., 2016), the datasets were automatically
labelled (i.e. groundtruth data). Regarding data labelling, each participant was required by the
instructors to repeat pre-designated routes under normal, drowsy, and aggressive driving states, and
therefore the data was automatically labelled. More than 420 minutes of naturalistic driving data
along with video footage of the trips are collected. After an inspection it is discovered that the data of
the sixth driver is incomplete, where aggressive driving data on secondary road is missing. Therefore,
data for the first five drivers are adopted, which approximately contains 420 minutes of naturalistic
driving. The raw dataset was processed by the authors in (Romera et al., 2016) so that all variables
are synchronized into the frequency of 1 Hz (i.e. the frequency of GPS for speed measurement). It
should be noted, however, that the proposed method is applicable to data with different frequencies.
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(a) (b)

Figure 7: Routes in the motorway test (a) and secondary road tests (b) (Romera et al., 2016).

The 420 minutes are the total length taken by five drivers under three different driving states on two
types of roads. Each driver took six trips in total. For each driving state (i.e. normal, drowsy, and
aggressive), a driver took two trips. One is driving on the motorway, and the other is on the secondary
road. The driving duration and distance of each driver under different driving states are summarized
in Table. 1.

Table 1: Driving duration and distance for five driver under different driving state

State Normal Drowsy Aggressive

Road Type Motorway Secondary
Road

Motorway Secondary
Road

Motorway Secondary
Road

Trip Info. Duration (Distance)

D1 14 min.
(25 km)

10 min.
(16 km)

15 min.
(25 km)

8 min.
(13 km)

12 min.
(24 km)

8 min.
(16 km)

D2 15 min.
(26 km)

10 min.
(16 km)

15 min.
(25 km)

10 min.
(16 km)

14 min.
(26 km)

10 min.
(16 km)

D3 15 min.
(26 km)

11 min.
(16 km)

16 min.
(26 km)

10 min.
(17 km)

13 min.
(26 km)

11 min.
(16 km)

D4 16 min.
(25 km)

11 min.
(16 km)

17 min.
(25 km)

11 min.
(17 km)

15 min.
(25 km)

10 min.
(16 km)

D5 15 min.
(25 km)

11 min.
(16 km)

18 min.
(25 km)

11 min.
(16 km)

13 min.
(25 km)

7 min.
(12 km)

4.2. Driving state model specification

It is noted that the existing dataset in (Romera et al., 2016) (see, Section 4.1) is drawn to validate
the algorithms in this work. In this dataset, smartphone is preferred for data collection due to the fact
that it is easily accessible, widely available and of low cost (Wahlström et al., 2017; Saiprasert et al.,
2017). In a modern smartphone, different sensors are available such as cellular, GPS. Three sensors
of smartphone are considered in the dataset including GPS (i.e. speed), three-axis accelerometer (i.e.
lateral, longitudinal and vertical accelerations) and gyroscope (i.e. yaw, pitch and roll angle).

With raw sensory data, data preprocessing is first conducted to unify the data length via data
resampling (due to different sampling frequencies of various sensors) and attenuate the effect of sensor
noise (see, Section 4.1 for more information). Speed, three-axis accelerations and orientation angles
are chosen as the feature vector in this work, which are as defined below

Feature = [Speed, 3-axis Accelerations, Orientations]. (1)
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Since these signals have been proved to be effective for modelling driving behaviours under various
conditions (Meiring and Myburgh, 2015; Wahlström et al., 2017). For example, lateral acceleration
captures the side to side movements representing driving events such as left/right turn and lane
change, while longitudinal acceleration corresponds to vehicle braking and accelerating behaviours. It
should be highlighted that other related signals can also be accommodated by the proposed system
via augmenting the feature vector.

4.3. Results

Results of the study includes four parts. The first part is the results of data visualization and
analysis. Typical feature distribution and entire features distribution are both visualized and analysed.
The second part is about the comparisons of different classifier. As a result, random forest is identified
as the most suitable classifier. The third part is the results of optimizing paramters for random forest.
The last part is the results of comparing generic, road-aware, personalized model, and personalized
model with road information.

4.3.1. Data visualization and analysis

To investigate the differences among different drivers’ driving behaviours so that the rationale
for personalized state recognition are provided, different data visualization and analysis approaches
are adopted including typical features analysis using histogram, and data visualization using t-SNE
algorithm along with statistical analysis.

Typical feature analysis: feature analysis under various driving states for different drivers is
first conducted using histogram as discussed in Section 3.1. There are seven features for classification
as in (1). For the sake of brevity, two typical features are compared including speed and yaw angle.
Previous research has indicated that these two signals can better reflect driving behaviours than
others (Meiring and Myburgh, 2015; Castignani et al., 2015), where speed indicates the longitudinal
behaviour and yaw angle indicates the steering behaviour. The histograms are displayed in Figs 8 and
9, where their corresponding statistics are also calculated and given in Fig 10.

From Figs 8 and 9, it is evident how the distribution of speed and yaw angle varies by different
driving states. First for a given driver Di, the speed and yaw distributions under different driving
states differ in terms of shape, mode number and range, which reflects the differences in various driving
states. Take the speed histogram of driver No. 5 as an example, it is skewed right under normal state,
symmetric under drowsy state and bimodal under aggressive state. More importantly, for a given
driving state (i.e. a given column), the speed and yaw distributions for different drivers also differ
substantially. Take the speed histogram under aggressive state as an example, it is skewed right for
D1, symmetric for D2, multimodal for D3, skewed right for D4 and bimodal for D5. This is also
obvious from statistics as shown in Fig 10. By comparing the bar of the same color, one can see the
substantial differences (i.e. hight and sign) between different drivers. For example, under aggressive
driving state (red color), the mean value of yaw angel is positive for D2, D3, but is negative for D1,
D4, D5. One can also see from Fig 10 the significant differences in the speed variance under aggressive
driving state.

t-SNE visualization: it would be also of great interest to analyse the differences of the entire
feature distributions for different drivers under various driving states. Considering that it is generally
difficult to visualize high-dimensional data, advanced dimension reduction algorithm t-SNE in Section
3.1 is drawn to achieve this task. By using this approach, the original seven dimensional data is
projected onto two dimensional space represented by principle component 1 and principle component
2. For the sake of brevity only the data under aggressive driving state is displayed in Fig 11. The
statistics of the principle components for different drivers (D1 to D5) and overall data under various
driving states are also calculated and displayed in Fig 12.

It can be visually seen from Fig 11 that the data distributions of different drivers under aggressive
driving state vary a lot, similar conclusion can be drawn for the data under normal and drowsy driving
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Figure 8: Speed histogram under various driving states (i.e. normal, drowsy, aggressive) for five drivers (D1 to D5 from
top to bottom).

states. For example, there are few samples near the centre for driver 1, which is quite different from
other drivers. Fig 12 investigates the differences quantitatively through descriptive statistics. One
can see the substantial differences (i.e. hight and sign) between different drivers. Take the mean of
PC 1 as an example, under aggressive driving state (red color), the value for D1, D2, D3 and D4 is
negative, but the value for D4 is positive; besides, the value of D2 under normal driving state is quite
similar to that of D3 under drowsy driving state. Similar observations can be drawn for the data of PC
2. As a result, if a generic (average) model is trained by using all driver’s data indiscriminately, the
personalized driving characteristics of individual driver will be overlooked and consequently results in
very limited performance for a particular driver, particularly when the drivers’ behaviours vary a lot.

4.3.2. Similarity and Threshold

The proposed system is able to demonstrate the necessities of adopting a personalized system by
analysing the feature distributions of a specific driver’s and all drivers’ data. This is significantly
important when a user just starts to use this system and therefore no enough labelled individual data
is available. The logic is that if the feature distributions of a specific driver’s and all drivers’ data are
very close, a generic model is used to predict his/her driving state, which may avoid overfitting issue.
While if the feature distributions are significantly different, a personalized model is trained by using
labelled personalized data.

In order to evaluate the similarity between a specific driver’s and all drivers’ data in a quantitative
manner, Spearman distance is adopted. Spearman distance is to estimate the fitness of two variables
expressed by a monotonic function (Xie et al., 2016). It is also able to compute the similarity between
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Figure 9: Yaw angle histogram under various driving states (i.e. normal, drowsy, aggressive) for five drivers (D1 to D5
from top to bottom).
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Figure 10: Statistics corresponding to the histograms for speed and yaw angle under various driving states for different
drivers including overall data.
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Figure 11: t-SNE visualization for different drivers including overall data under aggressive driving state.
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Figure 12: Statistics (mean and variance) comparisons of different principal components for different drivers and overall
data under various driving states.

two different datasets with different sizes. The Spearman distance is defined as follows.

D = 1− (rs − r̄s)(rt − r̄t)T√
(rs − r̄s)(rs − r̄s)T

√
(rs − r̄s)(rt − r̄t)T

where rsj is the rank of xsj taken over x1j , . . . , xsj , xmj and rtj is the rank of ytj taken over y1j , . . . , ytj , ymj ,
computed by tired rank method. In the tired rank method, the values are ranked from smallest to
largest. Moreover, it returns the average ranks when several xsj or ytj have the same values. In this
paper, x and y are two different datasets from a specific driver and all drivers. rsj is the rank of j-th
feature with length m for dataset x and rtj is the rank of j-th feature with length m for dataset y.
Moreover, rs and rt are the coordinate-wise rank vectors of xs and yt. xs and yt represent a specific
item of dataset x or y (a measurement includes all measured features). Here, n is the number of
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features. r̄s and r̄t are given by

r̄s =
1

n

n∑
j=1

rsj , r̄t =
1

n

n∑
j=1

rtj

In order to normalize the difference within [0, 1], (2) is applied to convert Spearman distance into
similarity. After obtaining the similarity, an appropriate threshold needs to be selected to determine
constructing whether a personalized model should be constructed or not. The threshold is computed
by comparing all drivers’ data with the data randomly picked from all drivers’ data. The number of
random picking is 5288 (5288 seconds driving data) which is the average data number for five drivers.
The aforementioned procedure is automatically implemented by the proposed system.

Si =
DB − |DB −Di|

DB
, (2)

where DB is the Spearman distance between the data of all five drivers and the data of randomly
picked average data number for five drivers (termed “baseline similarity”). Di is the Spearman distance
between the data of i-th driver and all five drivers. |DB −Di| is the absolute difference between DB

and Di and Si is the similarity between all five drivers and i-th driver. The baseline similarity and
the similarity of five drivers are summarized in Table. 2.

Table 2: The similarity of five drivers

Driver D1 D2 D3 D4 D5 Baseline

Similarity 0.9783 0.9787 0.9698 0.9822 0.9867 0.9992

According to the experimental results, the baseline similarity is 0.9992. When the similarity of
a specific driver is lower than the baseline similarity, a personalized model is constructed for driving
state recognition. One can see from Table 2 that the similarity values of five drivers are all lower
than the baseline similarity. This is because drivers’ diversity was considered in collecting the driving
data in Romera et al. (2016), where the participants were from different genders, different age groups,
different vehicle models, and different fuel types. The background information for five test drivers are
also summarized in Table. 3 of Romera et al. (2016). Therefore, personalized models are adopted for
all five drivers.

Table 3: Background information for different drivers

No. Gender Age Vehicle model Fuel type

D1 Male 40-50 Audi Q5 (2014) Diesel
D2 Male 20-30 Mercedes B180 (2013) Diesel
D3 Male 20-30 Citröen C4 (2015) Diesel
D4 Female 30-40 Kia Picanto (2004) Gasoline
D5 Male 30-40 Opel Astra (2007) Gasoline

4.3.3. Comparisons of different classifiers

In this section, different classifiers are implemented and compared. The algorithms contain five
categories: discriminant analysis, decision tree, KNN, SVM and ensemble learning. It should be
noted that the random forest with Bayesian parameter optimization in Section 4.3.4 is adopted.
These algorithms have been previously applied to different classification applications (Meiring and
Myburgh, 2015; Dong et al., 2011) such as driving mode classification, but it is unclear which one is
most suitable for driving state recognition. To this end, all drivers’ driving data is aggregated to derive
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a generic driving state recognition model, where 5-fold cross validation (Witten et al., 2016) is adopted
to evaluate the performance. It is also noted that cross validation is also an effective way to assess the
problem of overfitting, since if the trained model is over-fitted its cross validation performance would
be poor. The classification results of different approaches are summarized in Table 4, where results
are obtained via Bayesian optimization.

Table 4: Comparisons of performance by Classifiers

Classifier Type Accuracy

Discriminant Analysis Linear 51.0%
Quadratic 51.1%

Decision Tree Complex 63.1%
Medium 58.6%
Simple 52.7%

KNN Fine 63.1%
Quadratic 51.1%
Coarse 61.7%
Cosine 58.2%
Cubic 64.1%
Weighted 66.8%

SVM Linear 51.0%
Quadratic 56.4%
Cubic 24.9%
Fine Gaussian 67.4%
Medium Gaussian 62.0%
Coarse Gaussian 55.6%

Ensemble Learning Boosted Trees 60.5%
Random Forest 81.3%
Subspace Discriminant 51.5%
Subspace KNN 69.0%
RUSBoost Trees 57.1%

One can see from Table 4 that random forest with Bayesian parameter optimization outperforms
others significantly and consequently chosen as the classification algorithm for the task of driving
state recognition. For the sake of completeness, it is briefly discussed in this part. Random forest
is one of the most popular machine learning algorithms (Breiman, 2001). As one type of ensemble
learnings (Bootstrap Aggregation or bagging), it combines a number of weak learners and works out
the final output through voting. Each weak learner is trained by a bootstrap replica, which is obtained
by randomly selecting N observations out of N with replacement (where N is the size of dataset).
Different from conventional bagging methods, bootstrap replicas are generated randomly and the
features for each weak learner is chosen randomly as well. As a result, it is more robust against noise
and has less correlation with weak learners. In this paper, Classification And Regression Tree (CART)
(Breiman, 2001) is chosen as the weak learner. Therefore, generating bootstrap replica of the dataset
and establishing CART tree by using the bootstrap replica are two key steps in random forest in this
paper.

Bootstrap replicas of dataset: a subset S ⊂ D of training samples is randomly chosen with
replacement, where D is the entire dataset. Then, the tree is grown using this subset and is not
pruned.

Classification And Regression Tree: in this step, generated bootstrap replicas are used to
produce CART trees. Given n training samples, namely, features X = [x1, . . . , xp] with class label
Y = {1, 2, . . . , k}, classification is to build a model so that the class label Y can be worked out for
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new feature data X. The CART model is to divide X into k disjoint sets {C1, C2, . . . , Ck} and so
the predicted value of Y is j if X belongs to Cj . This is achieved by building a binary decision
tree according to certain splitting rules (for node determination and threshold selection) based on
the features variables. The detailed algorithm is referred to (Rutkowski et al., 2014), where the
pseudocodes are given as follows for the sake of completeness.

Various impurity measures for variable selection are available such as Gini gain and Information
gain, in this work, Gini index is chosen via trial & error testing (Rutkowski et al., 2014). Moreover,
some stopping rules exist in CART algorithm to avoid its adverse effect such as over-fitting. In this
paper, one of the stopping rule is considered, i.e., the minimum leaf size, where its determination is
transformed into the minimization of the cross validation loss solved via Bayesian optimization (see,
Section 4.3.4).

Pseudocodes for CART:

Inputs:
S is a sequence of examples; A is a set of discrete attributes
Output: CART model

1. Let CART be a tree with a single leaf A0 (root)
2. Let A0 = A
3. For each attribute ai ∈ A, the set of attribute values Ai is partitioned into two disjoint subsets
Ai

L and Ai
R, let Xi denote all possible Ai

L

4. For each Ai
L ∈ Xi,

5. Calculate the Gini gain and select the variable (Ãi
L,q = Ai

L) which maximizes Gini gain

(Ãi
L,q is a spilt);

6. Send data S(Ãi
L,q) to the “leaf node”;

7. Send data S(Ãi
R,q) to the “right node”;

8. Recursively repeat the same process on these two “nodes” until stopping rules are satisfied
9. Return the CART model

4.3.4. Random forest with Bayesian optimization

The parameters of random forest in Section 3.2 are optimized via Bayesian optimization, where
the ensemble quality is also evaluated. The maximum number of iterations in Bayesian optimization is
chosen 30 (Levitan and Herman, 1987). The number of learners (trees) and minimum leaf size are two
key parameters. In this paper, the optimal minimum leaf size is one and minimum observed objective
(i.e. classification error) is obtained when function evaluation equals to five. The optimal number of
learners are determined by minimizing the estimated objective, which is 496.

Three different methods are adopted to evaluate the quality of ensembles including independent
test set (note: the independent test set is not included in training set), out-of-bag error and cross
validation. For the more than 26000 samples in this paper, 70% is chosen as training set and the
remaining 30% is chosen as testing set. The classification error under the three methods are plotted
in Fig 13. One can see that the optimal number of learners is close to 500, similar to the result by
using Bayesian optimization. This validates the effectiveness of Bayesian parameter optimization.

4.4. Integrate optimized random forest into models

After discovering that random forest with Bayesian optimization outperforms others in driving
state recognition, optimized random forest is integrated into different models including generic model,
personalized model, generic model with road information (also termed road-aware model), and per-
sonalized model with road information. In this section, the performance of the proposed personalized
driving state recognition with road information is evaluated. To investigate the effect of personal-
ized driving characteristics and road information on classification performance, they are evaluated
respectively leading to personalized system and road-aware system, respectively.
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Figure 13: Different approaches to evaluate the ensemble quality.

4.4.1. Personalized model vs. Generic model

First the personalized model is compared to the generic model, where their comparative results
for different drivers are displayed in Table 5. It can been seen from Table 5 that

Table 5: Comparisons between personalized model and generic model

Accuracy

Model Personalized model Generic model Difference

D1 96.0% 86.9% 9.1%
D2 87.2% 78.3% 8.9%
D3 90.3% 82.0% 8.3%
D4 79.9% 70.9% 9.0%
D5 95.2% 87.4% 7.8%

Overall 89.5% 81.3% 8.2%

(i) The result of D5 is the best for generic model, and the improvement for D5 using personalized
model is the smallest; this is because the distribution of overall data is closest to that of D5,
which can be seen from Fig 12.

(ii) Incorporating personalized driving characteristics, the personalized model substantially outper-
forms the generic model for all test drivers. And the overall recognition accuracy increases from
81.3% to 89.5%.

4.4.2. Road-aware model vs. Generic Model

The effect of road information available in the experimental dataset is further investigated. Road
type can provide important information such as maximum speed, congestion among others. The
comparative results between road-aware model and generic model for different drivers are displayed
in Table 6. One can also see the performance improvement from Table 6, where road-aware model
outperforms generic model for all test drivers. Although the improvement is not significant, it is
enough to demonstrate the benefits of incorporating road information into driving state recognition.

4.4.3. Personalized model with road information vs. Road-aware model

In this model, personalized driving characteristics and road information are considered simulta-
neously. Its comparative results against road-aware model are displayed in Table 7. It can be seen
from Table 7 that for all drivers the personalized model outperforms the road-aware model for both
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Table 6: Comparisons between road-aware model and generic model

Accuracy

Model Road-aware model Generic model Difference

D1 88.9% 86.9% 2.0%
D2 80.8% 78.3% 2.5%
D3 84.2% 82.0% 2.2%
D4 76.7% 70.9% 5.8%
D5 88.6% 87.4% 1.2%

Overall 83.6% 81.3% 2.3%

Table 7: Comparisons between personalized model with road information and road-ware model

Accuracy

Model Personalized model Road-aware model

Road Type Motorway Secondary Motorway Secondary

D1 98.0% 96.7% 89.4% 88.4%
D2 92.5% 86.3% 82.1% 79.4%
D3 96.0% 88.0% 88.7% 79.5%
D4 84.6% 82.9% 77.5% 75.9%
D5 98.0% 94.7% 93.8% 82.7%

Overall 93.6% 89.4% 86.2% 80.9%

D1 97.4% 88.9%
D2 89.5% 80.8%
D3 92.0% 84.2%
D4 83.8% 76.7%
D5 96.4% 88.6%

Overall 91.6% 83.6%

motorway and secondary road. As a consequence, the personalized model with road information
outperforms the road-aware model, where the overall accuracy increases from 83.6% to 91.6%.

4.4.4. Detailed comparisons

To make a detailed comparison for four different models under various driving states, the confusion
matrices are also plotted and displayed in Fig 14. In this figure, the diagonal cells in green show the
number and percentage of correct classification for different driving states. Take the generic model
as an example, 9563 samples are correctly classified as normal corresponding to 36.2% of all 26440
samples. The off-diagonal cells show where the mistakes come from. For example, in first row, 1110
of normal samples are incorrectly classified as drowsy corresponding to 4.2% of all 26440 samples.
The rightmost column presents the accuracy for each predicted class, while the bottom row shows the
accuracy for each true class. For example, out of 9563+1448+1210=12221 normal prediction, 78.3%
are correct and 21.7% are wrong; out of 9563+1110+625=11298 normal samples, 84.6% are correctly
predicted as normal and 15.4% are wrongly predicted where drowsy class takes 4.2% and aggressive
class takes 2.4%. The cell at the right bottom shows the overall accuracy, which for the generic model
is 81.3%.

Finally the comparative results for the overall accuracy of the four different approaches are sum-
marized in Table 8. It can be concluded that both personalized driving characteristics and road
information can improve driving state recognition performance. More importantly, the proposed solu-
tion accommodating personalized driving characteristics and road information simultaneously results
in the best performance, where the overall accuracy increases from 81.3% to 91.6%.

In practice, the false classification of drowsy driving is more significant to avoid driving risks. To
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Figure 14: Confusion matrices for four different models: generic model, personalized model, road-aware model and
personalized model with road information.

obtain the false classification rate of drowsy driving, the problem is formulated as a binary classification
problem, where drowsy driving is defined as one kind of class and other driving states (normal driving
and aggressive driving) are defined as the other class. The binary classification error tables can be
derived from Fig. 14. The error tables are omitted for the sake of brevity. The false classification
rate of drowsy driving can be calculated by false negatives (Type II error) over (true positives + false
negatives). According to numeric experiments, the proposed personalized model with road information
outperforms the other models, where the false classification rate of driving drowsy is only 10.3%. The
false classification rate of generic model, road-aware model and personalized model are 20.4%, 17.3%
and 12.7%, respectively. For Type I error, the false positive rate of the proposed model is only
8.8%, which is also better than generic model (18.3%), road-aware model (16.4%) and personalized
model (10.4%). Therefore, the proposed personalized model with road information achieves the best
performance, when drowsy driving recognition is concerned.
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Table 8: Comparisons for four different models

Model generic model personalized model

Without road info 81.3% 89.5%

With road info 83.6% 91.6%

5. Discussion

The main aim of this study is to develop a personalized driving state recognition system by learning
from non-intrusive, easily accessible vehicle related measurements. Previous studies are mainly focused
on driving state based on generic driving behaviours of all drivers (Masala and Grosso, 2014). However,
this generic model may overlook personalized driving characteristics and preferences, and therefore
leads to a degraded performance for a specific driver.

As demonstrated in Section. 4.4, this aim is achieved and it is one of the key contributions of this
paper. The proposed personalized driving state recognition system has advantages of (i) accommodat-
ing personalized driving characteristics and preferences; (ii) considering contextual information (e.g.
road type). Due to the aforementioned advantages, the proposed personalized driving state recognition
system significantly enhances the accuracy of driving state recognition for a specific driver.

Based on an intuitive feeling, a personalized system should be better than a generic model. How-
ever, both qualitative and quantitative analysis are required to demonstrate the necessities of con-
structing a personalized system especially when only a small personalized data is available. Using a
small size data to train a model may lead to the problem of overfitting. To this end, two data visualiza-
tion methods are applied to identify the differences between individual driver and all drivers in feature
space. The first data visualization method is to analyse a typical driving feature such as speed, yaw
angle (Birrell et al., 2015). The second data visualization method is t-SNE algorithm. Considering
that the entire features are seven-dimensional, t-SNE algorithm is used to reduce dimensionality from
seven to two so that the distribution of entire features can be visually analysed (Bejani and Ghatee,
2018). As shown in Section. 4.3.1, vehicle-related measurements of different drivers under different
states are ssystemignificantly different. As a result, a personalized model is more likely to outperform
a generic model for driving state recognition.

Several classifiers are compared to select the most suitable one for driving state recognition. Ac-
cording to the experimental results in Section. 4.3.3, random forest with Bayesian optimization out-
performs others. The possible reasons are summarized as follows. (i) Vehicle-related measurements
from GPS, IMU, and gyroscope have been proved to be effective for modelling driving behaviours
under various conditions (Meiring and Myburgh, 2015; Wahlström et al., 2017). (ii) Random forest
makes a decision based on the prediction of all ensembles (classifiers), which is able to avoid over-fitting
(Breiman, 2001). (iii) The ensembles of random forest are decision tree. When constructing a decision
tree, the most useful features are always at the top layers, which makes random forest implement
feature selection automatically (Pitombo et al., 2017).

In addition, it is generally difficult to tune the parameters of classifiers. In this study, the parame-
ters of classifiers are optimized by Bayesian optimization algorithm, which can optimize the parameters
of different classifiers in an automatic manner (Suzdaleva and Nagy, 2014).

There are also some limitations in the proposed personalized driving state recognition system,
which should be further improved. The following aspects are identified.

• The false classification of drowsy driving can be reduced to further enhance driving safety. This
can be achieved at decision level and at training level. At decision level, the threshold for
determining drowsy driving can be tuned. The lower the threshold is, the more sensitive the
system is. While at training level, drowsy driving data can be allocated a higher weight over
other driving state data. As a result, the system will be more sensitive to drowsy driving.

• Online learning may be integrated into the proposed framework, since individual driver’s driving
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behaviours may change with more driving experience being accumulated. The design of online
learning algorithm can borrow the experiences from (Suzdaleva and Nagy, 2018).

• It is challenging to manually label personal data. To this end, a personalized learning framework
can be developed, which can automatically learn personal driving characteristics and preference
from raw data. The results in (Tang et al., 2018b) are very useful in this regard.

• It has been proved that travel time can be estimated more precisely by considering temporal
information (Tang et al., 2018a). Therefore, temporal driving characteristics can be considered
so that classification performance can be further improved;

• More related contextual information can be accommodated such as traffic situation, weather
condition, continuous driving time; this will inevitably require a larger amount of driving data;

6. Conclusions

This paper addressed the problem of driving state recognition by learning from non-intrusive, easily
accessible vehicle related measurements via a smartphone (speed via GPS, three-axis accelerations
and orientation angles via IMU). To guarantee a satisfying performance so that adaptive assistance
systems are more acceptable and user-friendly, a machine learning based personalized system with
road information is proposed, where personalized driving characteristics of individual drivers and
road information are accommodated cooperatively. The proposed system is validated by using the
UAH-DriveSet dataset, which was collected in 2016 in real world environments.

Different classifiers are compared to identify a suitable one for the driving state recognition in-
cluding Discriminant Analysis, Decision Tree, KNN, SVM, Ensemble Learning and their variations,
where random forest with Bayesian parameter optimization outperform others. Adopting the random
forest as the classifier, experimental comparisons are further made on different models under various
frameworks. Experimental results demonstrate that the proposed machine learning based personal-
ized system with road information significantly outperforms the conventional generic model because
personalized driving characteristics and road information are taken into account, where the overall
recognition accuracy increases from 81.3% to 91.6%. It should be noted that although the proposed
personalized learning framework is proposed for the problem of driving state recognition, it can find
a wide range of applications where diverse behaviours exist.
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traffic safety: an acceleration-based safety evaluation procedure for smartphones. Modern Applied Science, 8
(1):88, 2014.
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