4,013 research outputs found

    MHD Memes

    Full text link
    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics.Comment: Submitted for publication in IOP Journal of Physics: Conference Series for publication in "Plasma Theory, Wave Kinetics, and Nonlinear Dynamics", Proceedings of KaufmanFest, 5-7 October 2007, University of California, Berkeley, US

    Nonaxisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions

    Full text link
    We describe a magnetohydrodynamic (MHD) constrained energy functional for equilibrium calculations that combines the topological constraints of ideal MHD with elements of Taylor relaxation. Extremizing states allow for partially chaotic magnetic fields and non-trivial pressure profiles supported by a discrete set of ideal interfaces with irrational rotational transforms. Numerical solutions are computed using the Stepped Pressure Equilibrium Code, SPEC, and benchmarks and convergence calculations are presented.Comment: Submitted to Plasma Physics and Controlled Fusion for publication with a cluster of papers associated with workshop: Stability and Nonlinear Dynamics of Plasmas, October 31, 2009 Atlanta, GA on occasion of 65th birthday of R.L. Dewar. V2 is revised for referee

    Generalised action-angle coordinates defined on island chains

    Full text link
    Straight-field-line coordinates are very useful for representing magnetic fields in toroidally confined plasmas, but fundamental problems arise regarding their definition in 3-D geometries because of the formation of islands and chaotic field regions, ie non-integrability. In Hamiltonian dynamical systems terms these coordinates are a form of action-angle variables, which are normally defined only for integrable systems. In order to describe 3-D magnetic field systems, a generalisation of this concept was proposed recently by the present authors that unified the concepts of ghost surfaces and quadratic-flux-minimising (QFMin) surfaces. This was based on a simple canonical transformation generated by a change of variable θ=θ(Θ,ζ)\theta = \theta(\Theta,\zeta), where θ\theta and ζ\zeta are poloidal and toroidal angles, respectively, with Θ\Theta a new poloidal angle chosen to give pseudo-orbits that are a) straight when plotted in the ζ,Θ\zeta,\Theta plane and b) QFMin pseudo-orbits in the transformed coordinate. These two requirements ensure that the pseudo-orbits are also c) ghost pseudo-orbits. In the present paper, it is demonstrated that these requirements do not \emph{uniquely} specify the transformation owing to a relabelling symmetry. A variational method of solution that removes this lack of uniqueness is proposed.Comment: 10 pages. Accepted by Plasma Physics and Controlled Fusion as part of a cluster of refereed papers in a special issue containing papers arising from the Joint International Stellarator & Heliotron Workshop and Asia-Pacific Plasma Theory Conference, held in Canberra and Murramarang Resort, Australia, 30 January - 3 February, 201

    Hamilton--Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    Full text link
    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton--Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.Comment: Prepared for submission to Phys. Letts.

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    A comparison of incompressible limits for resistive plasmas

    Full text link
    The constraint of incompressibility is often used to simplify the magnetohydrodynamic (MHD) description of linearized plasma dynamics because it does not affect the ideal MHD marginal stability point. In this paper two methods for introducing incompressibility are compared in a cylindrical plasma model: In the first method, the limit γ\gamma \to \infty is taken, where γ\gamma is the ratio of specific heats; in the second, an anisotropic mass tensor ρ\mathbf{\rho} is used, with the component parallel to the magnetic field taken to vanish, ρ0\rho_{\parallel} \to 0. Use of resistive MHD reveals the nature of these two limits because the Alfv\'en and slow magnetosonic continua of ideal MHD are converted to point spectra and moved into the complex plane. Both limits profoundly change the slow-magnetosonic spectrum, but only the second limit faithfully reproduces the resistive Alfv\'en spectrum and its wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the Alfv\'en continuum in the first method, while it is moved to infinity by the second. The degeneracy in the first is broken by finite resistivity. For numerical and semi-analytical study of these models, we choose plasma equilibria which cast light on puzzling aspects of results found in earlier literature.Comment: 14 pages, 10 figure
    corecore