The vanishing of the divergence of the total stress tensor (magnetic plus
kinetic) in a neighborhood of an equilibrium plasma containing a toroidal
surface of discontinuity gives boundary and jump conditions that strongly
constrain allowable continuations of the magnetic field across the surface. The
boundary conditions allow the magnetic fields on either side of the
discontinuity surface to be described by surface magnetic potentials, reducing
the continuation problem to that of solving a Hamilton--Jacobi equation. The
characteristics of this equation obey Hamiltonian equations of motion, and a
necessary condition for the existence of a continued field across a general
toroidal surface is that there exist invariant tori in the phase space of this
Hamiltonian system. It is argued from the Birkhoff theorem that existence of
such an invariant torus is also, in general, sufficient for continuation to be
possible. An important corollary is that the rotational transform of the
continued field on a surface of discontinuity must, generically, be irrational.Comment: Prepared for submission to Phys. Letts.