4,147 research outputs found

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Get PDF
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Urological implications associated with the use of recreational drugs: A narrative review

    Get PDF
    About 275 million people worldwide aged between 15 and 64 years used drugs at least once since 2016. Initial estimations suggest that 13.8 million young people between 15 and 16 years used cannabis every year. Recreational drug use contributes significantly to mortality as well as physical and mental health problems. A number of urological complications can arise from the use of common and emerging recreational drugs which can present as wide spectrum affecting lower and upper urinary tracts, kidneys, sexual organs as well as sexual dysfunction. In order to effectively manage these issues, urologists need to be cognizant of these complications in their patients, particularly among youths. This review attempted to consolidate available data and provide insight into this issue; however, further population-based epidemiological studies are needed to provide necessary guidelines

    A comparison of incompressible limits for resistive plasmas

    Full text link
    The constraint of incompressibility is often used to simplify the magnetohydrodynamic (MHD) description of linearized plasma dynamics because it does not affect the ideal MHD marginal stability point. In this paper two methods for introducing incompressibility are compared in a cylindrical plasma model: In the first method, the limit γ\gamma \to \infty is taken, where γ\gamma is the ratio of specific heats; in the second, an anisotropic mass tensor ρ\mathbf{\rho} is used, with the component parallel to the magnetic field taken to vanish, ρ0\rho_{\parallel} \to 0. Use of resistive MHD reveals the nature of these two limits because the Alfv\'en and slow magnetosonic continua of ideal MHD are converted to point spectra and moved into the complex plane. Both limits profoundly change the slow-magnetosonic spectrum, but only the second limit faithfully reproduces the resistive Alfv\'en spectrum and its wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the Alfv\'en continuum in the first method, while it is moved to infinity by the second. The degeneracy in the first is broken by finite resistivity. For numerical and semi-analytical study of these models, we choose plasma equilibria which cast light on puzzling aspects of results found in earlier literature.Comment: 14 pages, 10 figure

    Vorticity dynamics near sharp topographic features

    Get PDF
    In ocean models, the interaction with boundaries is often parameterized as it involves small-scale processes that are usually hard to capture in a large-scale model. However, such interactions can play important roles in the model dynamics. For example, the choice of boundary conditions (free-slip vs. no-slip) has a direct impact on the vorticity (enstrophy) budget: with no-slip boundary conditions, vorticity is injected into the system, whereas with free-slip boundary conditions, there should be no vorticity injection as long as the coastline is smooth. However, we show here that at boundary singularities (e.g., corners), vorticity is injected into the domain even for free-slip boundary conditions. In this article, we use North Brazil Current rings to better understand the dynamics of eddy-topography interaction. This complex interaction is first analyzed in terms of a point vortex interacting with a wall. Within this simplified framework, we can describe the vorticity generation mechanism as a pseudoinviscid process. To quantify this vorticity injection, we first consider the inviscid limit for which we can derive an analytical formula. This theoretical prediction is then evaluated in conventional gridded ocean models. In such models, the representation of such a viscous boundary interaction may be affected by the grid representation and the discretization of the advection and viscous operators

    Mode waters and subduction rates in a high-resolution South Atlantic simulation

    Get PDF
    Water mass production and destruction in the subtropical South Atlantic gyre is studied. A high resolution numerical model is used to examine regional mode water formation and estimate the associated instantaneous and mean subduction rates. Primitive equation dynamics expressed in depth following (sigma) coordinates are employed. The main hydrographic and kinematic features of the South Atlantic are faithfully reproduced by the model. In particular, the principle current systems appear and the model exhibits a sequence of ventilated potential vorticity minima on density surfaces coinciding with those of observed South Atlantic mode waters. The formation sequence within the model of these mode waters is described. Net formation rates are estimated using a pseudo-Lagrangian method and by diagnosing the time history of subsurface water mass volumes. Maximum formation rates occur in the density bands of the mode waters. It is argued that the roots of the model mode waters are found along open ocean late winter outcrops, rather than in the waters entering the gyre from the Brazil Current/Malvinas Current Confluence region. Eddies generate interannual variability in mode water formation and precondition the waters in the outcrop regions for convection. On the other hand, the eddy kinetic energy of the Confluence region is too intense to permit a direct connection between deep convection cells in the western boundary current and those in the open South Atlantic that directly form mode water
    corecore