5 research outputs found

    Generation of an HLA-DQ2.5 knock-in mouse

    No full text
    The human MHC class II molecule HLA-DQ2.5 is implicated in multiple autoimmune disorders, including celiac disease, type 1 diabetes, and systemic lupus erythematosus. The pathogenic contribution of HLA-DQ2.5 in many of these disorders is not fully understood. There is thus a need for an HLA-DQ2.5 humanized mouse model with physiological expression of this MHC molecule that can be integrated into disease models. In this article, we report the generation of an HLA-DQ2.5 knock-in mouse strain on a C57BL/6 background in which sequences encoding the extracellular moieties of mouse MHC class II H2-IAa and H2-IAb1 have been replaced with those of HLA-DQA1*05:01 and HLA-DQB1*02:01. In heterozygous knock-in mice, the expression of HLA-DQ2.5 is superimposable with the expression of H2-IA. This was not the case in a regular untargeted HLA-DQ2.5 transgenic mouse. HLA-DQ2.5 in the knock-in animals is functional for T cell development and for Ag presentation to HLA-DQ2.5–restricted and gluten-specific T cells. Because C57BL/6 mice do not express H2-IEa, the only functional MHC class II molecule in homozygous HLA-DQ2.5 knock-in mice is the knock-in gene product. This alleviates the need for crossing with MHC class II knockout mice to study the isolated function of the MHC transgene. Our novel mouse strain provides an important tool to study the involvement of HLA-DQ2.5 in models of diseases with association to this HLA allotype

    TG2-gluten complexes as antigens for gluten-specific and transglutaminase-2 specific B cells in celiac disease

    No full text
    A hallmark of celiac disease is the gluten-dependent production of antibodies specific for deamidated gluten peptides (DGP) and the enzyme transglutaminase 2 (TG2). Both types of antibodies are believed to result from B cells receiving help from gluten-specific CD4 + T cells and differentiating into antibody-producing plasma cells. We have here studied the collaboration between DGP- and TG2-specific B cells with gluten-specific CD4 + T cells using transgenic mice expressing celiac patient-derived T-cell and B-cell receptors, as well as between B-cell transfectants and patient-derived gluten-specific T-cell clones. We show that multivalent TG2-gluten complexes are efficient antigens for both TG2-specific and DGP-specific B cells and allow both types of B cells to receive help from gluten-specific T cells of many different specificities

    Normal development of mice lacking PAXX, the paralogue of XRCC4 and XLF

    No full text
    DNA repair consists of several cellular pathways which recognize and repair damaged DNA. The classical nonhomologous DNA end‐joining (NHEJ) pathway repairs double‐strand breaks in DNA. It is required for maturation of both B and T lymphocytes by supporting V(D)J recombination as well as B‐cell differentiation during class switch recombination (CSR). Inactivation of NHEJ factors Ku70, Ku80, XRCC4, DNA ligase 4, DNA‐PKcs, and Artemis impairs V(D)J recombination and blocks lymphocyte development. Paralogue of XRCC4 and XLF (PAXX) is an accessory NHEJ factor that has a significant impact on the repair of DNA lesions induced by ionizing radiation in human, murine, and chicken cells. However, the role of PAXX during development is poorly understood. To determine the physiological role of PAXX, we deleted part of the Paxx promoter and the first two exons in mice. Further, we compared Paxx‐knockout mice with wild‐type (WT) and NHEJ‐deficient controls including Ku80‐ and Dna‐pkcs‐null and severe combined immunodeficiency mice. Surprisingly, Paxx‐deficient mice were not distinguishable from the WT littermates; they were the same weight and size, fertility status, had normal spleen, thymus, and bone marrow. Paxx‐deficient mice had the same number of chromosomal and chromatid breaks as WT mice. Moreover, Paxx‐deficient primary B lymphocytes had the same level of CSR as lymphocytes isolated from WT mice. We concluded that PAXX is dispensable for normal mouse development

    Robust DNA repair in PAXX-deficient mammalian cells

    No full text
    To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T lymphocytes through its function in V(D)J recombination and class switch recombination (CSR). NHEJ consists of several core and accessory factors, including Ku70, Ku80, XRCC4, DNA ligase 4, DNA-PKcs, Artemis, and XLF. Paralog of XRCC4 and XLF (PAXX) is the recently described accessory NHEJ factor that structurally resembles XRCC4 and XLF and interacts with Ku70/Ku80. To determine the physiological role of PAXX in mammalian cells, we purchased and characterized a set of custom-generated and commercially available NHEJ-deficient human haploid HAP1 cells, PAXXΔ, XRCC4Δ, and XLFΔ. In our studies, HAP1 PAXXΔ cells demonstrated modest sensitivity to DNA damage, which was comparable to wild-type controls. By contrast, XRCC4Δ and XLFΔ HAP1 cells possessed significant DNA repair defects measured as sensitivity to double-strand break inducing agents and chromosomal breaks. To investigate the role of PAXX in CSR, we generated and characterized Paxx−/− and Aid−/− murine lymphoid CH12F3 cells. CSR to IgA was nearly at wild-type levels in the Paxx−/− cells and completely ablated in the absence of activation-induced cytidine deaminase (AID). In addition, Paxx−/− CH12F3 cells were hypersensitive to zeocin when compared to wild-type controls. We concluded that Paxx-deficient mammalian cells maintain robust NHEJ and CSR

    A high-affinity human TCR-like antibody detects celiac disease gluten peptide-MHC complexes and inhibits T cell activation

    No full text
    Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)–like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity
    corecore