6 research outputs found

    Effective control of Leptosphaeria maculans increases importance of L. biglobosa as a cause of phoma stem canker epidemics on oilseed rape

    Get PDF
    BACKGROUND: Phoma stem canker is a damaging disease of oilseed rape caused by two related fungal species, Leptosphaeria maculans and L. biglobosa. However, previous work has mainly focused on L. maculans and there has been little work on L. biglobosa. This work provides evidence of the importance of L. biglobosa to stem canker epidemics in the UK. RESULTS: Quantification of L. maculans and L. biglobosa DNA using species-specific quantitative PCR showed that L. biglobosa caused both upper stem lesions and stem base cankers on nine oilseed rape cultivars in the UK. Upper stem lesions were mainly caused by L. biglobosa. For stem base cankers, there was more L. maculans DNA than L. biglobosa DNA in the susceptible cultivar Drakkar, while there was more L. biglobosa DNA than L. maculans DNA in cultivars with the resistance gene Rlm7 against L. maculans. The frequency of L. biglobosa detected in stem base cankers increased from 14% in 2000 to 95% in 2013. Ascospores of L. biglobosa and L. maculans were mostly released on the same days and the number of L. biglobosa ascospores in air samples increased from the 2010/2011 to 2012/2013 growing seasons. CONCLUSION: Effective control of L. maculans increased infection by L. biglobosa, causing severe upper stem lesions and stem base cankers, leading to yield losses. The importance of L. biglobosa to phoma stem canker epidemics needs to target both L. maculans and L. biglobosa

    Redox flow batteries鈥擟oncepts and chemistries for cost-effective energy storage

    No full text
    \ua9 2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed
    corecore