12 research outputs found

    A watershed and active contours based method for dendritic spine segmentation in 2-photon microscopy images (2-Foton mikroskopi görüntülerindeki dendritik dikenlerin bölütlenmesi için watershed ve etkin çevritlere dayalı bir yöntem)

    Get PDF
    Analysing morphological and volumetric properties of dendritic spines from 2-photon microscopy images has been of interest to neuroscientists in recent years. Developing robust and reliable tools for automatic analysis depends on the segmentation quality. In this paper, we propose a new segmentation algorithm for dendritic spine segmentation based on watershed and active contour methods. First, our proposed method coarsely segments the dendritic spine area using the watershed algorithm. Then, these results are further refined using a region-based active contour approach. We compare our results and the results of existing methods in the literature to manual delineations of a domain expert. Experimental results demonstrate that our proposed method produces more accurate results than the existing algorithms proposed for dendritic spine segmentation

    Combining nonparametric spatial context priors with nonparametric shape priors for dendritic spine segmentation in 2-photon microscopy images

    Full text link
    Data driven segmentation is an important initial step of shape prior-based segmentation methods since it is assumed that the data term brings a curve to a plausible level so that shape and data terms can then work together to produce better segmentations. When purely data driven segmentation produces poor results, the final segmentation is generally affected adversely. One challenge faced by many existing data terms is due to the fact that they consider only pixel intensities to decide whether to assign a pixel to the foreground or to the background region. When the distributions of the foreground and background pixel intensities have significant overlap, such data terms become ineffective, as they produce uncertain results for many pixels in a test image. In such cases, using prior information about the spatial context of the object to be segmented together with the data term can bring a curve to a plausible stage, which would then serve as a good initial point to launch shape-based segmentation. In this paper, we propose a new segmentation approach that combines nonparametric context priors with a learned-intensity-based data term and nonparametric shape priors. We perform experiments for dendritic spine segmentation in both 2D and 3D 2-photon microscopy images. The experimental results demonstrate that using spatial context priors leads to significant improvements.Comment: IEEE International Symposium on Biomedical Imagin

    Automatic dendritic spine detection using multiscale dot enhancement filters and sift features

    Get PDF
    Statistical characterization of morphological changes of dendritic spines is becoming of crucial interest in the field of neurobiology. Automatic detection and segmentation of dendritic spines promises significant reductions on the time spent by the scientists and reduces the subjectivity concerns. In this paper, we present two approaches for automated detection of dendritic spines in 2-photon laser scanning microscopy (2pLSM) images. The first method combines the idea of dot enhancement filters with information from the dendritic skeleton. The second method learns an SVM classifier by utilizing some pre-labeled SIFT feature descriptors and uses the classifier to detect dendritic spines in new images. For the segmentation of detected spines, we employ a watershed-variational segmentation algorithm. We evaluate the proposed approaches by comparing with manual segmentations of domain experts and the results of a noncommercial software, NeuronIQ. Our methods produce promising detection rate with high segmentation accuracy thus can serve as a useful tool for spine analysis

    A joint classification and segmentation approach for dendritic spine segmentation in 2-photon microscopy images

    Get PDF
    Shape priors have been successfully used in challenging biomedical imaging problems. However when the shape distribution involves multiple shape classes, leading to a multimodal shape density, effective use of shape priors in segmentation becomes more challenging. In such scenarios, knowing the class of the shape can aid the segmentation process, which is of course unknown a priori. In this paper, we propose a joint classification and segmentation approach for dendritic spine segmentation which infers the class of the spine during segmentation and adapts the remaining segmentation process accordingly. We evaluate our proposed approach on 2-photon microscopy images containing dendritic spines and compare its performance quantitatively to an existing approach based on nonparametric shape priors. Both visual and quantitative results demonstrate the effectiveness of our approach in dendritic spine segmentation

    Biomedical image time series registration with particle filtering (Parçacık süzgeci ile biyomedikal görüntü zaman serisi çakıştırma)

    Get PDF
    We propose a family of methods for biomedical image time series registration based on Particle filtering. The first method applies an intensity-based information-theoretic approach to calculate importance weights. An effective second group of methods use landmark-based approaches for the same purpose by automatically detecting intensity maxima or SIFT interest points from image time series. A brute-force search for the best alignment usually produces good results with proper cost functions, but becomes computationally expensive if the whole search space is explored. Hill climbing optimizations seek local optima. Particle filtering avoids local solutions by introducing randomness and sequentially updating the posterior distribution representing probable solutions. Thus, it can be more robust for the registration of image time series. We show promising preliminary results on dendrite image time series

    3D dendritic spine segmentation using nonparametric shape priors (3B dendritik dikenlerin parametrik olmayan şekil ön bilgisi kullanılarak bölütlenmesi)

    Get PDF
    Analyzing morphological and structural changes of dendritic spines in 2-photon microscopy images in time is important for neuroscience researchers. Correct segmentation of dendritic spines is an important step of developing robust and reliable automatic tools for such analysis. In this paper, we propose an approach for segmentation of 3D dendritic spines using nonparametric shape priors. The proposed method learns the prior distribution of shapes through Parzen density estimation on the training set of shapes. Then, the posterior distribution of shapes is obtained by combining the learned prior distribution with a data term in a Bayesian framework. Finally, the segmentation result that maximizes the posterior is found using active contours. Experimental results demonstrate that using nonparametric shape priors leads to better 3D dendritic spine segmentation results

    Automated dendritic spine tracking on 2-photon microscopic images (2-Foton mikroskopi görüntülerinde otomatik dendritik diken takibi)

    Get PDF
    The rapid and spontaneous morphological changes of dendritic spines have been an important observation to understand how information is stored in brain. Manual assessment of spine structure has been a useful tool to understand the differences between wild type (normal) and diseased cases. In order to perform a more through analysis, automatic tools need to be developed due to the immense amount of image data collected throughout the experiments. Additionally, dendritic spines are very dynamic structures and florescence microscopy contains high level of noise, blur and shift due to the optical properties. In this study, we track locations of dendritic spines in a full series of a time-lapse two photon microscopic images. To achieve this we propose a combined detection and tracking framework. For the detection we use a SIFT based algorithm, while the tracking requires a combination of registration and distance based spine matching. Experimental results show that this technique helps to track detected spines in time series even though the noise or blur deformed the image and complicated the detection

    Nonparametric joint shape and feature priors for image segmentation

    No full text
    In many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes ( classes). Existing techniques in the literature estimate the underlying shape distribution by extending Parzen density estimator to the space of shapes. In these methods, the evolving curve may converge to a shape from a wrong mode of the posterior density when the observed intensities provide very little information about the object boundaries. In such scenarios, employing both shape-and class-dependent discriminative feature priors can aid the segmentation process. Such features may involve, e.g., intensity-based, textural, or geometric information about the objects to be segmented. In this paper, we propose a segmentation algorithm that uses nonparametric joint shape and feature priors constructed by Parzen density estimation. We incorporate the learned joint shape and feature prior distribution into a maximum a posteriori estimation framework for segmentation. The resulting optimization problem is solved using active contours. We present experimental results on a variety of synthetic and real data sets from several fields involving multimodal shape densities. Experimental results demonstrate the potential of the proposed method

    Tracking-assisted detection of dendritic spines in time-lapse microscopic images

    No full text
    Detecting morphological changes of dendritic spines in time-lapse microscopy images and correlating them with functional properties such as memory and learning, are fundamental and challenging problems in neurobiology research. In this paper, we propose an algorithm for dendritic spine detection in time series. The proposed approach initially performs spine detection at each time point and improves the accuracy by exploiting the information obtained from tracking of individual spines over time. To detect dendritic spines in a time point image we employ an SVM classifier trained by pre-labeled SIFT feature descriptors in combination with a dot enhancement filter. Second, to track the growth or loss of spines, we apply a SIFT-based rigid registration method for the alignment of time-series images. This step takes into account both the structure and the movement of objects, combined with a robust dynamic scheme to link information about spines that disappear and reappear over time. Next, we improve spine detection by employing a probabilistic dynamic programming approach to search for an optimum solution to accurately detect missed spines. Finally, we determine the spine location more precisely by performing a watershed-geodesic active contour model. We quantitatively assess the performance of the proposed spine detection algorithm based on annotations performed by biologists and compare its performance with the results obtained by the noncommercial software NeuronIQ. Experiments show that our approach can accurately detect and quantify spines in 2-photon microscopy time-lapse data and is able to accurately identify spine elimination and formation

    Investigation of the Possible Protective Effects of Ketamine and Dantrolene on the Hippocampal Apoptosis and Spatial Learning in Rats Exposed to Repeated Electroconvulsive Seizures as a Model of Status Epilepticus

    No full text
    AIM: To evaluate the possible neuroprotective effects of ketamine and dantrolene on the hippocampal apoptosis and spatial learning in rats exposed to repeated electroconvulsive seizures (ECS) as a model of status epilepticus (SE). MATERIAL and METHODS: Twenty-four rats were assigned to 4 groups. 1st Group was Sham. 2nd Group was ECS: ECS was induced by ear electrodes via electrical stimulation. The same ECS protocol was applied to the 3th and 4th Groups which received ketamine (40 mg/kg s.c.) or dantrolene (5 mg/kg i.p.) 1 h before each ECS, respectively. Following 30 days of recovery, the cognitive status of the animals was evaluated via Morris Water Maze (MWM). The same experimental protocol was repeated 14 days afterward to evaluate the retention of the memory. Hippocampal apoptosis was examined in corresponding experimental groups. RESULTS: All the animals in four groups learned the task with no significant difference between groups in MWM. The ECS+ketamine group showed memory impairment 14 days afterward. ECS+dantrolene group was not different from controls. ECS caused long term apoptotic processes in dentate gyrus (DG) and non-apoptotic neuronal injury in CA1 and CA2. CONCLUSION: Dantrolene and ketamine inhibited apoptosis and showed neuroprotective effects. Although ketamine and dantrolene inhibited ECS-induced apoptosis and non-apoptotic injury, they did not produce similar effects on memory retention. It will be warranted to evaluate cognitive dysfunction by taking into consideration the other factors in addition to apoptosis and neurodegenerative changes
    corecore