427 research outputs found

    Design features of the upcoming Coastal and Ocean Basin in Ostend, Belgium, for marine renewable energy applications

    Get PDF
    The new Coastal and Ocean Basin (COB) located at the Greenbridge Science Park in Ostend, Belgium is under construction since February 2017. The laboratory will provide a versatile facility that will make a wide range of physical modelling studies possible, including the ability to generate waves in combination with currents and wind at a wide range of model scales. The facility is serving the needs in Flanders, Belgium, in the fields of mainly offshore renewable energy and coastal engineering. The COB will allow users to conduct tests for coastal and offshore engineering research and commercial projects. The basin will have state-of-the-art generating and absorbing wavemakers, a current generation system, and a wind generator. It will be possible to generate waves and currents in the same, opposite and oblique directions. The basin is expected to be operational in 2019. This paper presents an overview of the basin’s capabilities, the ongoing work, and selected results from the design of the COB

    Military use

    Get PDF

    Militair gebruik

    Get PDF

    Validation of skeletal muscle mass assessment at the level of the third cervical vertebra in patients with head and neck cancer

    Get PDF
    Background: Low skeletal muscle mass (SMM) is associated with adverse outcomes. SMM is often assessed at the third lumbar vertebra (L3) on abdominal imaging. Abdominal imaging is not routinely performed in patients with head and neck cancer (HNC). We aim to validate SMM measurement at the level of the third cervical vertebra (C3) on head and neck imaging. Material and methods: Patients with pre-treatment whole-body computed tomography (CT) between 2010 and 2018 were included. Cross-sectional muscle area (CSMA) was manually delineated at the level of C3 and L3. Correlation coefficients and intraclass correlation coefficients (ICCs) were calculated. Cohen's kappa was used to assess the reliability of identifying a patient with low SMM. Results: Two hundred patients were included. Correlation between CSMA at the level of C3 and L3 was good (r = 0.75, p < 0.01). Using a multivariate formula to estimate CSMA at L3, including gender, age, and weight, correlation improved (r = 0.82, p < 0.01). The agreement between estimated and actual CSMA at L3 was good (ICC 0.78, p < 0.01). There was moderate agreement in the identification of patients with low SMM based on the estimated lumbar skeletal muscle mass index (LSMI) and actual LSMI (Cohen's κ: 0.57, 95%CI 0.45–0.69). Conclusions: CSMA at C3 correlates well with CSMA at L3. There is moderate agreement in the identification of patients with low SMM based on the estimated lumbar SMI (based on measurement at C3) and actual LSMI

    Author Correction: Accurate detection of circulating tumor DNA using nanopore consensus sequencing

    Get PDF
    The Data Availability statement in the original version of the paper reads: “The sequencing datasets generated during the current study are available upon request at EGA, under accession number EGAS00001003759”. However, as this data upload was not successful, the authors reuploaded the data under a different accession number and have amended the Data Availability statement to read “The sequencing datasets generated during the current study are available upon request at EGA, under accession number EGAS00001007090”. The original article has been corrected.</p
    • …
    corecore