21 research outputs found

    Overview of the labour market [January 2001]

    Get PDF
    The most recent labour market data indicates continued employment growth. The number of unfilled vacancies appears to be rising apace indicating that as the number of unemployed continues to fall, employers are finding it increasingly difficult to recruit staff. The rise in the level of those economically active (and a corresponding fall in economic inactivity) is reassuring. This suggests that both government policy and opportunity has spurred people into the labour market who othewise might not have taken part. Rising wage levels and further vacancy information will indicate whether this injection into the labour market is sufficient to prevent any labour shortages, thus enabling the current run of growth to continue

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Bondi or not Bondi: The impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    No full text
    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M3\mathcal{M}_\infty \geq 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula

    Clustering in the VIRMOS survey: Expected cosmic errors

    No full text
    We predict the errors on counts-in-cells statistics measured in the future VIRMOS survey. Several effects are included, such as variation of clustering, biasing, and geometry. Most importantly for the survey strategy, sparse sampling appears to have no particular advantage in this case, especially for higher order statistics at high redshift. The predicted accuracy is a few percent for the variance, and about 10 percent for the skewness at z = 1 in a small dynamic range around 1 h(-1) Mpc

    Collision-induced galaxy formation: semi-analytical model and multi-wavelength predictions

    No full text
    A semi-analytic model is proposed that couples the Press-Schechter formalism for the number of galaxies with a prescription for galaxy-galaxy interactions that enables to follow the evolution of galaxy morphologies along the Hubble sequence. Within this framework, we calculate the chemo-spectrophotometric evolution of galaxies to obtain spectral energy distributions. We find that such an approach is very successful in reproducing the statistical properties of galaxies as well as their time evolution. We are able to make predictions as a function of galaxy type: for clarity, we restrict ourselves to two categories of galaxies: early and late types that are identified with ellipticals and disks. In our model, irregulars are simply an early stage of galaxy formation. In particular, we obtain good matches for the galaxy counts and redshift distributions of sources from UV to submm wavelengths. We also reproduce the observed cosmic star formation history and the diffuse background radiation, and make predictions as to the epoch and wavelength at which the dust-shrouded star formation of spheroids begins to dominate over the star formation that occurs more quiescently in disks. A new prediction of our model is a rise in the FIR luminosity density with increasing redshift, peaking at about z3z\sim 3, and with a ratio to the local luminosity density ρL,ν(z=zpeak)/ρL,ν(z=0)\rho_{L,\nu} (z = z_{peak})/ \rho_{L,\nu} (z = 0) about 10 times higher than that in the blue (B-band) which peaks near z2z\sim 2

    Semi-analytic models and background hydrogen-ionizing flux

    No full text
    We estimate the contribution of galaxies to the cosmic background flux at 912 Angstrom by means of an extended semi-analytic model of galaxy formation and evolution which takes into account the absorption of Lyman-limit photons by HI and dust in the interstellar medium (ISM) of the galaxies. We find that, though the background Lyman-limit flux escaping from galaxies is negligible compared to the flux from quasars at high redshifts, these two contributions become comparable at z similar or equal to 0

    Turbulent ambipolar diffusion: numerical studies in two dimensions

    Get PDF
    Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium (ISM). However, observations indicate that this correlation is weak. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in astrophysical problems to increase transport rates above the (very slow) laminar values predicted by kinetic theory. We describe a series of numerical experiments addressing the problem of turbulent transport of magnetic fields in weakly ionized gases. We show, subject to various geometrical and physical restrictions, that turbulence in a weakly ionized medium rapidly diffuses the magnetic flux-to-mass ratio B/ρ through the buildup of appreciable ion-neutral drifts on small scales. These results are applicable to the field strength-density correlation in the ISM, as well as the merging of flux systems such as protostar and accretion disk fields or protostellar jets with ambient matter, and the vertical transport of galactic magnetic fields.</p

    Magnetic flux transport in the ISM through turbulent ambipolar diffusion

    No full text
    Under ideal MHD conditions the magnetic field strength should be correlated with density in the interstellar medium ( ISM). However, observations indicate that this correlation is weaker than expected. Ambipolar diffusion can decrease the flux-to-mass ratio in weakly ionized media; however, it is generally thought to be too slow to play a significant role in the ISM except in the densest molecular clouds. Turbulence is often invoked in other astrophysical problems to increase transport rates above the ( very slow) diffusive values. Building on analytical studies, we test with numerical models whether turbulence can enhance the ambipolar diffusion rate sufficiently to explain the observed weak correlations. The numerical method is based on a gas-kinetic scheme with very low numerical diffusivity, thus allowing us to separate numerical and physical diffusion effects

    Predicting multi-wavelength properties of Lyman break galaxies with GalICS

    No full text
    GalICS (for GALaxies In Cosmological Simulations) is a model of hierarchical galaxy formation which combines high resolution numerical simulations for the dark matter component with semi-analytic prescriptions for the baryonic matter. It provides us with an explicit cosmological framework to analyse observations of distant galaxies, and to understand how they evolve to become local galaxies. We use GalICS to build multi-wavelength mock galaxy catalogues which include clustering properties. We can compare them to the sample of Lyman Break Galaxies at z=3 ( Steidel et al., 1996), and to deep sub-mm surveys. The predictions of the model will be detailed, and show a good agreement with the available data

    The progenitor set of present-day early-type galaxies

    No full text
    We present a comprehensive theoretical study, within a fully realistic semi-analytical framework, of the photometric properties of early-type progenitors in the redshift range 00.7) spirals have ~75-95 percent chance of being a progenitor, while the corresponding probability for large blue spirals (M_B&lt;-21.5, B-V&lt;0.7) is ~50-75 percent. Finally, we explore the correspondence between the true progenitor set of present-day early-types and the commonly used `red-sequence', defined as the set of galaxies within the part of the colour-magnitude space which is dominated by early-type objects. While large members (M_V&lt;-22) of the `red sequence' trace the progenitor set accurately in terms of numbers and mass, the relationship breaks down severely at fainter luminosities (M_V&gt;-21). Hence the red sequence is generally not a good proxy for the progenitor set of early-type galaxies.</z<1,
    corecore