19 research outputs found

    Cyclosporin A binding to Mycobacterium tuberculosis peptidyl-prolyl cis–trans isomerase A – Investigation by CD, FTIR and fluorescence spectroscopy

    Get PDF
    AbstractCircular dichroism and resolution-enhanced Fourier transform infrared reveal induction of secondary structural elements on peptidyl-prolyl cis–trans isomerase A (PpiA) from Mycobacterium tuberculosis upon binding cyclosporin A (CsA). Thermal denaturation shows aggregation of PpiA at higher temperatures (>70°C) and CsA fails to impart stabilization in protein structure. However, CsA stabilizes PpiA structure in urea denaturation. In presence/absence of CsA, urea-induced reversible unfolding of secondary and tertiary structures follows two-state and three-state transition, respectively. The chemical unfolding results also demonstrate that loss in the tertiary structure precedes the loss in secondary structure both in presence and absence of CsA at the initial stages. Fluorescence quenching suggests presence of a positive barrier around tryptophan microenvironment of PpiA

    An Oligopeptide Transporter of Mycobacterium tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages

    Get PDF
    Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppA(MTB). Methodology/Principal Findings: OppA(MTB) was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppA(MTB) confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1 beta, IL-6 and TNF-alpha was also compromised after inactivation of oppD. Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis

    Exafs And Nrvs Reveal A Conformational Distortion Of The Femo-Cofactor In The Mofe Nitrogenase Propargyl Alcohol Complex

    No full text
    We have used EXAFS and NRVS spectroscopies to examine the structural changes in the FeMo-cofactor active site of the α-70Ala variant of Azotobacter vinelandii nitrogenase on binding and reduction of propargyl alcohol (PA). The Mo K-edge near-edge and EXAFS spectra are very similar in the presence and absence of PA, suggesting PA does not bind at Mo. By contrast, Fe EXAFS spectra show a clear and reproducible change in the long Fe-Fe interaction at ~ 3.7 Å on PA binding with the apparent appearance of a new Fe-Fe interaction at 3.99 Å. An analogous change in the long Mo-Fe 5.1 Å interaction is not seen. The NRVS spectra exclude the possibility of large-scale structural change of the FeMo-cofactor involving breaking the μ2 Fe-S-Fe bonds of the Fe6S9X core. The simplest chemically consistent structural change is that the bound form of PA is coordinated at Fe atoms (Fe6 or Fe7) adjacent to the Mo terminus, with a concomitant movement of the Fe away from the central atom X and along the Fe-X bond by about 0.35 Å. This study comprises the first experimental evidence of the conformational changes of the FeMo-cofactor active site on binding a substrate or product. © 2012 Elsevier Inc

    Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo

    No full text
    Abstract Background Bamboo is an important member of the family Poaceae and has many inflorescence and flowering features rarely observed in other plant groups. It retains an unusual form of perennialism by having a long vegetative phase that can extend up to 120 years, followed by flowering and death of the plants. In contrast to a large number of studies conducted on the annual, reference plants Arabidopsis thaliana and rice, molecular studies to characterize flowering pathways in perennial bamboo are lacking. Since photoperiod plays a crucial role in flower induction in most plants, important genes involved in this pathway have been studied in the field grown Bambusa tulda, which flowers after 40-50 years. Results We identified several genes from B. tulda, including four related to the circadian clock [LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), ZEITLUPE (ZTL) and GIGANTEA (GI)], two circadian clock response integrators [CONSTANS A (COA), CONSTANS B (COB)] and four floral pathway integrators [FLOWERING LOCUS T1, 2, 3, 4 (FT1, 2, 3, 4)]. These genes were amplified from either gDNA and/or cDNA using degenerate as well as gene specific primers based on homologous sequences obtained from related monocot species. The sequence identity and phylogenetic comparisons revealed their close relationships to homologs identified in the temperate bamboo Phyllostachys edulis. While the four BtFT homologs were highly similar to each other, BtCOA possessed a full-length B-box domain that was truncated in BtCOB. Analysis of the spatial expression of these genes in selected flowering and non-flowering tissue stages indicated their possible involvement in flowering. The diurnal expression patterns of the clock genes were comparable to their homologs in rice, except for BtZTL. Among multiple BtCO and BtFT homologs, the diurnal pattern of only BtCOA and BtFT3, 4 were synchronized in the flower inductive tissue, but not in the non-flowering tissues. Conclusion This study elucidates the photoperiodic regulation of bamboo homologs of important flowering genes. The finding also identifies copy number expansion and gene expression divergence of CO and FT in bamboo. Further studies are required to understand their functional role in bamboo flowering

    Photolysis of Hi-CO Nitrogenase -Observation of a Plethora of Distinct CO Species Using Infrared Spectroscopy

    No full text
    Keywords: Nitrogen fixation / Nitrogenases / Enzyme catalysis / Carbon monoxide / IR spectroscopy / Photolysis / Azotobacter vinelandii Fourier-transform infrared-spectroscopy (FT-IR) was used to study the photochemistry of CO-inhibited Azotobacter vinelandii Mo nitrogenase using visible light at cryogenic temperatures. The FT-IR difference spectrum of photolyzed hi-CO at 4 K comprises negative bands at 1973 cm -1 and 1679 cm -1 together with positive bands at 1711 cm -1 , 2135 and 2123 cm -1 . The negative bands are assigned to a hi-CO state that comprises 2 metal-bound CO ligands, one terminally bound, and one bridged and/or protonated species. The positive band at 1711 cm -1 is assigned to a lo-CO product with a single bridged and/or protonated metal-CO group. We term these species "Hi-1" and "Lo-1", respectively. The high-energy bands are assigned to a liberated CO trapped in the protein pocket. Warming results in CO recombination, and the temperature dependence of the recombination rate yields an activation energy of 4 kJ mol -1 . Two α-H195 varian

    Crystal Structure of Low-Molecular-Weight Protein Tyrosine Phosphatase from Mycobacterium tuberculosis at 1.9-Ã… Resolution

    No full text
    The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-Ã… resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases
    corecore