19 research outputs found
All-optical ion generation for ion trap loading
We have investigated the all-optical generation of ions by photo-ionisation
of atoms generated by pulsed laser ablation. A direct comparison between a
resistively heated oven source and pulsed laser ablation is reported. Pulsed
laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium
flux, corresponding to atomic beams produced with oven temperatures greater
than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to
produce a thermal load more than one order of magnitude smaller than the oven
source. The atomic beam distributions obey Maxwell-Boltzmann statistics with
most probable speeds corresponding to temperatures greater than 2200 K. Below a
threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is
composed exclusively of ground state atoms. For higher fluences ions and
excited atoms are generated.Comment: 7 pages, 9 figure
Generative Adversarial Networks for Scintillation Signal Simulation in EXO-200
Generative Adversarial Networks trained on samples of simulated or actual
events have been proposed as a way of generating large simulated datasets at a
reduced computational cost. In this work, a novel approach to perform the
simulation of photodetector signals from the time projection chamber of the
EXO-200 experiment is demonstrated. The method is based on a Wasserstein
Generative Adversarial Network - a deep learning technique allowing for
implicit non-parametric estimation of the population distribution for a given
set of objects. Our network is trained on real calibration data using raw
scintillation waveforms as input. We find that it is able to produce
high-quality simulated waveforms an order of magnitude faster than the
traditional simulation approach and, importantly, generalize from the training
sample and discern salient high-level features of the data. In particular, the
network correctly deduces position dependency of scintillation light response
in the detector and correctly recognizes dead photodetector channels. The
network output is then integrated into the EXO-200 analysis framework to show
that the standard EXO-200 reconstruction routine processes the simulated
waveforms to produce energy distributions comparable to that of real waveforms.
Finally, the remaining discrepancies and potential ways to improve the approach
further are highlighted.Comment: 20 pages, 10 figure
Redução da influência da massa específica na determinação do teor de umidade de sementes de trigo
Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae)
The sensitivity of receptors in the posterior median eye of the nocturnal spider,Dinopis
Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58
Imaging individual barium atoms in solid xenon for barium tagging in nEXO
© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Double-β-decay involves the simultaneous conversion of two neutrons into two protons, and the emission of two electrons and two neutrinos; the neutrinoless process, although not yet observed, is thought to involve the emission of the two electrons but no neutrinos. The search for neutrinoless-double-β-decay probes fundamental properties of neutrinos, including whether or not the neutrino and antineutrino are distinct particles. Double-β-decay detectors are large and expensive, so it is essential to achieve the highest possible sensitivity with each study, and removing spurious contributions (‘background’) from detected signals is crucial. In the nEXO neutrinoless-double-β-decay experiment, the identification, or ‘tagging’, of the 136 Ba daughter atom resulting from the double-β decay of 136 Xe provides a technique for discriminating background. The tagging scheme studied here uses a cryogenic probe to trap the barium atom in a solid xenon matrix, where the barium atom is tagged through fluorescence imaging. Here we demonstrate the imaging and counting of individual barium atoms in solid xenon by scanning a focused laser across a solid xenon matrix deposited on a sapphire window. When the laser irradiates an individual atom, the fluorescence persists for about 30 seconds before dropping abruptly to the background level—a clear confirmation of one-atom imaging. Following evaporation of a barium deposit, the residual barium fluorescence is 0.16 per cent or less. Our technique achieves the imaging of single atoms in a solid noble element, establishing the basic principle of barium tagging for nEXO11Nsciescopu
