29 research outputs found

    Structural and Electrostatic Characterization of Pariacoto Virus: Implications for Viral Asembly

    Get PDF
    This is the peer reviewed version of the following article:Devkota, B., Petrov, A., Lemieux, S., Boz, M. B., Tang, L., Schneemann, A., … Harvey, S. C. (2009). Structural and Electrostatic Characterization of Pariacoto Virus: Implications for Viral Asembly. Biopolymers, 91(7), 530–538. http://doi.org/10.1002/bip.21168, which has been published in final form at doi.org/10.1002/bip.21168. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingWe present the first all-atom model for the structure of a T=3 virus, pariacoto virus (PaV), which is a non-enveloped, icosahedral RNA virus and a member of the Nodaviridae family. The model is an extension of the crystal structure, which reveals about 88% of the protein structure but only about 35% of the RNA structure. Evaluation of alternative models confirms our earlier observation that the polycationic protein tails must penetrate deeply into the core of the virus, where they stabilize the structure by neutralizing a substantial fraction of the RNA charge. This leads us to propose a model for the assembly of small icosahedral RNA viruses: nonspecific binding of the protein tails to the RNA leads to a collapse of the complex, in a fashion reminiscent of DNA condensation. The globular protein domains are excluded from the condensed phase but are tethered to it, so they accumulate in a shell around the condensed phase, where their concentration is high enough to trigger oligomerization and formation of the mature virus

    The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: Novel candidate genes, <scp>genotype–phenotype</scp> correlations and common mechanisms

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (&gt;60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS‐like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or “DTRs”). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype–phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Structural studies of ribonucleoprotein complexes using molecular modeling

    Get PDF
    The current work reports on structural studies of ribonucleoprotein complexes, Escherichia coli and Thermomyces lanuginosus ribosomes, and Pariacoto virus (PaV) using molecular modeling. Molecular modeling is the integration and representation of the structural data of molecules as models. Integrating high-resolution crystal structures available for the E. coli ribosome and the cryo-EM density maps for the PRE- and POST- accommodation states of the translational cycle, I generated two all-atom models for the ribosome in two functional states of the cycle. A program for flexible fitting of the crystal structures into low-resolution maps, YUP.scx, was used to generate the models. Based on these models, we hypothesize that the kinking of the tRNA plays a major role in cognate tRNA selection during accommodation. Secondly, we proposed all-atom models for the eukaryotic ribosomal RNA. This is part of a collaboration between Joachim Frank, Andrej Sali, and our lab to generate an all-atom model for the eukaryotic ribosome based on a cryo-EM density map of T. lanuginosus available at 8.9Å resolution. Homology modeling and ab initio RNA modeling were used to generate the rRNA components. Finally, we propose a first-order model for a T=3, icosahedral, RNA virus called Pariacoto virus. We used the structure available from x-ray crystallography as the starting model and modeled all the unresolved RNA and protein residues. Only 35% of the total RNA genome and 88% of the protein were resolved in the crystal structure. The generated models for the virus helped us determine the location of the missing N-terminal protein tails. The models were used to propose a new viral assembly pathway for small RNA viruses. We propose that the basic N-terminal tails make contact with the RNA genome and neutralize the negative charges in RNA and subsequently collapse the RNA/protein complex into a mature virus. This process is reminiscent of DNA condensation by positively charged ions.Ph.D.Committee Chair: Harvey, Stephen C; Committee Member: Hud, Nicholas V; Committee Member: McCarty, Nael A; Committee Member: Wartell, Roger

    Uniparental disomy in the human blastocyst is exceedingly rare.

    No full text
    OBJECTIVE: To establish whether uniparental disomy (UPD) could represent an outcome of embryonic aneuploidy self-correction and its relevance to preimplantation genetic diagnosis, and to validate a method of UPD detection in limited quantities of cells and determine the frequency of UPD in a large sample size of human blastocysts. DESIGN: Retrospective observational. SETTING: Academic center for reproductive medicine. PATIENT(S): Couples undergoing in vitro fertilization (IVF) treatment whose embryos underwent trophectoderm biopsy single-nucleotide polymorphism (SNP) array-based 24-chromosome aneuploidy screening. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Rate of UPD observed in the human blastocyst. RESULT(S): After application of defined thresholds, 2 of 3,401 blastocysts were found to possess isodisomy, and 0 were found to possess heterodisomy. The overall frequency of UPD in the human blastocyst was therefore 0.06%. CONCLUSION(S): This validated method of detection indicates that UPD is extremely rare and suggests that routine screening during preimplantation genetic diagnosis (PGD) may not be necessary. Furthermore, chromosomal UPD is unlikely to explain or support the existence of embryonic self-correction

    High-Throughput Carrier Screening Using TaqMan Allelic Discrimination

    Get PDF
    <div><p>Members of the Ashkenazi Jewish community are at an increased risk for inheritance of numerous genetic diseases such that carrier screening is medically recommended. This paper describes the development and evaluation of 30 TaqMan allelic discrimination qPCR assays for 29 mutations on 2 different high-throughput platforms. Four of these mutations are in the <i>GBA</i> gene and are successfully examined using short amplicons due to the qualitative nature of TaqMan allelic discrimination. Two systems were tested for their reliability (call rate) and consistency with previous diagnoses (diagnostic accuracy) indicating a call rate of 99.04% and a diagnostic accuracy of 100% (+/−0.00%) from one platform, and a call rate of 94.66% and a diagnostic accuracy of 93.35% (+/−0.29%) from a second for 9,216 genotypes. Results for mutations tested at the expected carrier frequency indicated a call rate of 97.87% and a diagnostic accuracy of 99.96% (+/−0.05%). This study demonstrated the ability of a high throughput qPCR methodology to accurately and reliably genotype 29 mutations in parallel. The universally applicable nature of this technology provides an opportunity to increase the number of mutations that can be screened simultaneously, and reduce the cost and turnaround time for accommodating newly identified and clinically relevant mutations.</p> </div

    Platform comparison for reproducibility.

    No full text
    <p>A notched box plot depicting the coefficient of variation for the FAM and VIC probes for the OpenArray® Real-Time PCR Platform and Fluidigm BioMark™ HD System. The coefficient of variation was calculated for the expected wild type samples, regardless of the final calls made by the instruments, for all 30 assays. The same samples were compared between instruments per assay, and the same numbers of plates were run on each instrument. The notches in the boxplot represent a 95% confidence interval.</p
    corecore