938 research outputs found

    Quantum information transport to multiple receivers

    Full text link
    The importance of transporting quantum information and entanglement with high fidelity cannot be overemphasized. We present a scheme based on adiabatic passage that allows for transportation of a qubit, operator measurements and entanglement, using a 1-D array of quantum sites with a single sender (Alice) and multiple receivers (Bobs). Alice need not know which Bob is the receiver, and if several Bobs try to receive the signal, they obtain a superposition state which can be used to realize two-qubit operator measurements for the generation of maximally entangled states.Comment: Modified in view of referee's comments, new author added, natural scheme for operator measurements identified, hence W state preparation replaced with GHZ state preparation via operator measurements. 4 pages, 3 figure

    Smooth-stemmed turnip

    Get PDF
    Cruciferous weeds are common throughout the agricultural areas of Western Australia. They include wild turnip, wild mustard, wild radish, charlock and raphistrum weed or short fruited turnip. Another one—tentatively named smooth-stemmed turnip—has recently been sighted. Its exact weed potential will not be known for some years, but it is likely to spread through the south coastal districts where the climate and sandy surfaced soils favour its growth

    Bowen ratio estimates of evapotranspiration for stands on the Virgin River in Southern Nevada

    Get PDF
    A Bowen ratio energy balance was conducted over a Tamarix ramosissima (saltcedar) stand growing in a riparian corridor along the Virgin River in southern Nevada. Measurements in two separate years were compared and contrasted on the basis of changes in growing conditions. In 1994, a drought year, record high temperatures, dry winds, and a falling water table caused partial wilt of outer smaller twigs in the canopy of many trees in the stand around the Bowen tower. Subsequently, evapotranspiration (ET) estimates declined dramatically over a 60‐day period (11 mm d−1 tod−1). In 1995, the Virgin River at the Bowen tower area changed its course, hydrologically isolating the Tamarix stand in the vicinity of the tower. In 1996, a 25% canopy loss was visually estimated for the Tamarix growing in the area of the tower. Higher soil temperatures relative to air temperatures were recorded in 1996 in response to this loss in canopy. With a more open canopy, thermally induced turbulence was observed in 1996. On day 160 of 1996, a 28°C rise over a 9‐hour period was correlated with increased wind speeds of greater than 4 m s−1. Subsequently, higher ET estimates were made in 1996 compared to 1994 (145 cm versus 75 cm). However, the energy balance was dominated by advection in 1996, with latent energy flux exceeding net radiation 65% of the measurement days compared to only 11% in 1994. We believe this advection was on a scale of the floodplain (hundreds of meters) as opposed to regional advection, since the majority of wind (90%) was in a N–S direction along the course of the river, and that a more open canopy allowed the horizontal transfer of energy into the Tamarix stand at the Bowen tower. Our results suggest that Tamarix has the potential to be both a low water user and a high water user, depending on moisture availability, canopy development, and atmospheric demand, and that advection can dominate energy balances and ET in aridland riparian zones such as the Virgin River

    The Explication Defence of Arguments from Reference

    Get PDF
    In a number of influential papers, Machery, Mallon, Nichols and Stich have presented a powerful critique of so-called arguments from reference, arguments that assume that a particular theory of reference is correct in order to establish a substantive conclusion. The critique is that, due to cross-cultural variation in semantic intuitions supposedly undermining the standard methodology for theorising about reference, the assumption that a theory of reference is correct is unjustified. I argue that the many extant responses to Machery et al.’s critique do little for the proponent of an argument from reference, as they do not show how to justify the problematic assumption. I then argue that it can in principle be justified by an appeal to Carnapian explication. I show how to apply the explication defence to arguments from reference given by Andreasen (for the biological reality of race) and by Churchland (against the existence of beliefs and desires)

    Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber

    Get PDF
    This document was prepared by the MicroBooNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. MicroBooNE is supported by the following: the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; the Swiss National Science Foundation; the Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation; and The Royal Society (United Kingdom). Additional support for the laser calibration system and cosmic ray tagger was provided by the Albert Einstein Center for Fundamental Physics, Bern, Switzerland.We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e(-), gamma, mu(-), pi(+/-), and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by MicroBooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based.e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359United States Department of Energy (DOE)National Science Foundation (NSF)Swiss National Science Foundation (SNSF) European CommissionScience and Technology Facilities Council (STFC), United Kingdom Research and InnovationRoyal Society of Londo

    Physics-based mathematical models for quantum devices via experimental system identification

    Full text link
    We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.Comment: 15 pages, 8 figures, published in proceedings of workshop on Physics-based mathematical models of low-dimensional semi-conductor nanostructures (18-23 November, 2007, Banff International Research Station, Alberta, Canada
    corecore