2,562 research outputs found

    VLA Observations of the Infrared Dark Cloud G19.30+0.07

    Full text link
    We present Very Large Array observations of ammonia (NH3) (1,1), (2,2), and CCS (2_1-1_0) emission toward the Infrared Dark Cloud (IRDC) G19.30+0.07 at ~22GHz. The NH3 emission closely follows the 8 micron extinction. The NH3 (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of ~10 to 20K and NH3 column densities of ~10^15 cm^-2. The estimated total mass of G19.30+0.07 is ~1130 Msun. The cloud comprises four compact NH3 clumps of mass ~30 to 160 Msun. Two coincide with 24 micron emission, indicating heating by protostars, and show evidence of outflow in the NH3 emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4GHz emission suggests that the IRDC contains no bright HII regions, and places a limit on the spectral type of an embedded ZAMS star to early-B or later. From the NH3 emission we find G19.30+0.07 is composed of three distinct velocity components, or "subclouds." One velocity component contains the two 24 micron sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH3 and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH3 predominantly in the high-density clumps, and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.Comment: 29 pages, 9 figures, accepted for publication by ApJ. Please contact the authors for higher resolution versions of the figure

    Role of Peptide Backbone Conformation on Biological Activity of Chemotactic Peptides

    Get PDF
    To investigate the role of peptide backbone conformation on the biological activity of chemotactic peptides, we synthesized a unique analog of N-formyl-Met-Leu-Phe-OH incorporating the C α,α disubstituted residue, dipropylglycine (Dpg) in place of Leu. The conformation of the stereochemically constrained Dpg analog was examined in the crystalline state by x-ray diffraction and in solution using NMR, IR, and CD methods. The secretagogue activity of the peptide on human neutrophils was determined and compared with that of a stereochemically constrained, folded type II β-turn analog incorporating 1-aminocyclohexanecarboxylic acid (Ac6c) at position 2 (f-Met- Ac6c -Phe-OMe), the parent peptide (f-Met-Leu-Phe-OH) and its methyl ester derivative (f-Met-Leu-Phe-OMe). In the solid state, the Dpg analog adopts an extended β-sheet-like structure with an intramolecular hydrogen bond between the NH and CO groups of the Dpg residue, thereby forming a fully extended (C5) conformation at position 2. The ϕ and ψ values for Met and Phe residues are significantly lower than the values expected for an ideal antiparallel beta conformation causing a twist in the extended backbone both at the N and C termini. Nuclear magnetic resonance studies suggest the presence of a significant population of the peptide molecules in an extended antiparallel β conformation and the involvement of Dpg NH in a C5 intramolecular hydrogen bond in solutions of deuterated chloroform and deuterated dimethyl sulfoxide. IR studies provide evidence for the presence of an intramolecular hydrogen bond in the molecule and the antiparallel extended conformation in chloroform solution. CD spectra in methanol, trifluoroethanol, and trimethyl phosphate indicate that the Dpg peptide shows slight conformational flexibility, whereas the folded Ac6c analog is quite rigid. The extended Dpg peptide consistently shows the highest activity in human peripheral blood neutrophils, being approximately 8 and 16 times more active than the parent peptide and the folded Ac6c analog, respectively. However, the finding that all four peptides have ED50 (the molar concentration of peptide to induce half-maximal enzyme release) values in the 10(-8)-10(-9) M range suggests that an induced fit mechanism may indeed be important in this ligand-receptor interaction. Moreover, it is also possible that alterations in the backbone conformation at the tripeptide level may not significantly alter the side chain topography and/or the accessibility of key functional groups important for interaction with the receptor

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Does tiny-scale atomic structure exist in the interstellar medium ?

    Full text link
    We report on preliminary results from the recent multi-epoch neutral hydrogen absorption measurements toward three pulsars, B0823+26, B1133+16 and B2016+28, using the Arecibo telescope. We do not find significant variations in optical depth profiles over periods of 0.3 and 9--10 yr, or on spatial scales of 10--20 and 70--85 AU. The large number of non detections of the tiny scale atomic structure suggests that the AU-sized structure is not ubiquitous in the interstellar medium and could be quite a rare phenomenon.Comment: Accepted by ApJ Letters, 5 pages, 2 figure

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    HyperPRAW : architecture-aware hypergraph restreaming partition to improve performance of parallel applications running on high performance computing systems

    Get PDF
    High Performance Computing (HPC) demand is on the rise, particularly for large distributed computing. HPC systems have, by design, very heterogeneous architectures, both in computation and in communication bandwidth, resulting in wide variations in the cost of communications between compute units. If large distributed applications are to take full advantage of HPC, the physical communication capabilities must be taken into consideration when allocating workload. Hypergraphs are good at modelling total volume of communication in parallel and distributed applications. To the best of our knowledge, there are no hypergraph partitioning algorithms to date that are architecture-aware. We propose a novel restreaming hypergraph partitioning algorithm (HyperPRAW) that takes advantage of peer to peer physical bandwidth profiling data to improve distributed applications performance in HPC systems. Our results show that not only the quality of the partitions achieved by our algorithm is comparable with state-of-the-art multilevel partitioning, but that the runtime performance in a synthetic benchmark is significantly reduced in 10 hypergraph models tested, with speedup factors of up to 14x

    A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants

    Full text link
    We have imaged a 1 deg^2 field centered on the known Galactic supernova remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope (GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while the 74 MHz data have a resolution of 100 arcsec. The addition of this low frequency data has allowed us to confirm the previously reported low frequency turnover in the radio continuum spectra of the two known SNRs in the field: G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency turnovers are believed to arise from free-free absorption in ionized thermal gas along the lines of site to the SNRs. Our data suggest that the 74 MHz optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and G11.4-0.1, respectively. In addition to adding much needed low frequency integrated flux measurements for two known SNRs, we have also detected three new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have integrated spectral indices between -0.44 and -0.80. Because of confusion with thermal sources, the high resolution (compared to previous Galactic radio frequency surveys) and surface brightness sensitivity of our observations have been essential to the identification of these new SNRs. With this study we have more than doubled the number of SNRs within just a 1 deg^2 field of view in the inner Galactic plane. This result suggests that future low frequency observations of the Galactic plane of similar quality may go a long way toward alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A

    Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations

    Get PDF
    The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the NNNN interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the NNNN interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuteron's vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.Comment: 42 pages, RevTe

    Electromagnetic Scattering from Relativistic Bound States

    Get PDF
    The quasipotential formalism for elastic scattering from relativistic bound states is formulated based on the instant constraint in the Breit frame. The quasipotential electromagnetic current is derived from Mandelstam's five-point kernel and obeys a two-body Ward identity. Breit-frame wave functions are obtained directly by solving integral equations with nonzero total three-momentum, thus accomplishing a dynamical boost. Calculations of electron-deuteron elastic form factors illustrate the importance of the dynamical boost versus kinematic boosts of the rest frame wave functions.Comment: RevTeX 3.0 manuscript, 9 pages. UU-file is a single PostScript file of the manuscript including figures. U. MD PP #93-17
    corecore