53 research outputs found

    Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG)

    Get PDF
    Acylcarnitine analysis is a useful test for identifying patients with inborn errors of mitochondrial fatty acid β-oxidation and certain organic acidemias. Plasma is routinely used in the diagnostic workup of symptomatic patients. Urine analysis of targeted acylcarnitine species may be helpful in the diagnosis of glutaric acidemia type I and other disorders in which polar acylcarnitine species accumulate. For newborn screening applications, dried blood spot acylcarnitine analysis can be performed as a multiplex assay with other analytes, including amino acids, succinylacetone, guanidinoacetate, creatine, and lysophosphatidylcholines. Tandem mass spectrometric methodology, established more than 30 years ago, remains a valid approach for acylcarnitine analysis. The method involves flow-injection analysis of esterified or underivatized acylcarnitines species and detection using a precursor-ion scan. Alternative methods utilize liquid chromatographic separation of isomeric and isobaric species and/or detection by selected reaction monitoring. These technical standards were developed as a resource for diagnostic laboratory practices in acylcarnitine analysis, interpretation, and reporting

    CAP/ACMG proficiency testing for biochemical genetics laboratories: a summary of performance

    Get PDF
    Testing for inborn errors of metabolism is performed by clinical laboratories worldwide, each utilizing laboratory-developed procedures. We sought to summarize performance in the College of American Pathologists’ (CAP) proficiency testing (PT) program and identify opportunities for improving laboratory quality. When evaluating PT data, we focused on a subset of laboratories that have participated in at least one survey since 2010

    Moonlighting Newborn Screening Markers: The Incidental Discovery of a Second-Tier Test for Pompe Disease

    Get PDF
    Purpose: To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease. Methods: The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases. Results: The (Cre/Crn)/GAA ratio was measured in residual dried blood spots of five Pompe cases and was found to be elevated (range 4.41–13.26; 99%ile of neonatal controls: 1.10). Verification was by analysis of 39 blinded specimens that included 10 controls, 24 samples with a definitive classification (16 Pompe, 8 false positives), and 5 with genotypes of uncertain significance. The CLIR tool showed 100% concordance of classification for the 24 known cases. Of the remaining five cases, three p.V222M homozygotes, a benign variant, were classified by CLIR as false positives; two with genotypes of unknown significance, one likely informative, were categorized as Pompe disease. Conclusion: The CLIR tool inclusive of the new ratio could have prevented at least 12 of 13 (92%) false-positive outcomes

    Precision Newborn Screening for Lysosomal Disorders

    Get PDF
    Purpose: The implementation of newborn screening for lysosomal disorders has uncovered overall poor specificity, psychosocial harm experienced by caregivers, and costly follow-up testing of false-positive cases. We report an informatics solution proven to minimize these issues. Methods: The Kentucky Department for Public Health outsourced testing for mucopolysaccharidosis type I (MPS I) and Pompe disease, conditions recently added to the recommended uniform screening panel, plus Krabbe disease, which was added by legislative mandate. A total of 55,161 specimens were collected from infants born over 1 year starting from February 2016. Testing by tandem mass spectrometry was integrated with multivariate pattern recognition software (Collaborative Laboratory Integrated Reports), which is freely available to newborn screening programs for selection of cases for which a biochemical second-tier test is needed. Results: Of five presumptive positive cases, one was affected with infantile Krabbe disease, two with Pompe disease, and one with MPS I. The remaining case was a heterozygote for the latter condition. The false-positive rate was 0.0018% and the positive predictive value was 80%. Conclusion: Postanalytical interpretive tools can drastically reduce false-positive outcomes, with preliminary evidence of no greater risk of false-negative events, still to be verified by long-term surveillance

    488 From discovery to the clinical laboratory: a methodological appraisal of untargeted metabolomics platforms to characterize inborn errors of metabolism.

    No full text
    OBJECTIVES/GOALS: Untargeted metabolomics platforms are powerful biomarker discovery tools. However, the absence of uniform study design, data analysis, and reporting standards limits translation of this research into the clinical lab. The goal was to critically appraise existing untargeted metabolomics platforms that analyzed inborn errors of metabolism. METHODS/STUDY POPULATION: A search strategy was conducted in MEDLINE via PubMed from January 16, 2013, to January 16, 2023. The search strategy was limited to primary literature articles written in English that evaluated human subjects with inborn errors of metabolism (IEMs). Articles that performed targeted metabolomic analysis or analyzed non-human samples were excluded. Information on patient cohorts analyzed, sample types, and method design were extracted using a template. Categorical data are summarized as frequencies and percentages. RESULTS/ANTICIPATED RESULTS: A total of 96 distinct IEMs were evaluated by the different untargeted metabolomics methods included in this review. However, most IEMs (55/96, 57%) were evaluated by a single platform, in a single study, with a limited cohort size. Only one study validated their results using a separate, validation cohort. There was considerable diversity in the separation techniques and mass spectrometry instrumentation used by the studies to create their untargeted metabolomics methods. Slightly over half (59%) of the studies identified at least some of the metabolites detected in their samples with the highest level of confidence. Importantly, most of the included studies reported adherence to quality metrics, including use of quality control material (65%) and internal standards in their analysis (61%). DISCUSSION/SIGNIFICANCE: Future studies analyzing IEM patient samples with untargeted metabolomics platforms should progress beyond single-subject studies and evaluate the reproducibility of the research using a prospective, or validation cohort as well as confirm metabolite annotations with reference metabolites standards to generate clinically useful data
    corecore